Abstract
In theories with renormalons the perturbative series is factorially divergent even after restricting to a given order in 1/N, making the 1/N expansion a natural testing ground for the theory of resurgence. We study in detail the interplay between resurgent properties and the 1/N expansion in various integrable field theories with renormalons. We focus on the free energy in the presence of a chemical potential coupled to a conserved charge, which can be computed exactly with the thermodynamic Bethe ansatz (TBA). In some examples, like the first 1/N correction to the free energy in the non-linear sigma model, the terms in the 1/N expansion can be fully decoded in terms of a resurgent trans-series in the coupling constant. In the principal chiral field we find a new, explicit solution for the large N free energy which can be written as the median resummation of a trans-series with infinitely many, analytically computable IR renormalon corrections. However, in other examples, like the Gross-Neveu model, each term in the 1/N expansion includes non-perturbative corrections which can not be predicted by a resurgent analysis of the corresponding perturbative series. We also study the properties of the series in 1/N. In the Gross-Neveu model, where this is convergent, we analytically continue the series beyond its radius of convergence and show how the continuation matches with known dualities with sine-Gordon theories.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
H.E. Stanley, Spherical model as the limit of infinite spin dimensionality, Phys. Rev. 176 (1968) 718 [INSPIRE].
G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
S.R. Coleman and E. Witten, Chiral Symmetry Breakdown in Large N Chromodynamics, Phys. Rev. Lett. 45 (1980) 100 [INSPIRE].
E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].
D.J. Gross and A. Neveu, Dynamical Symmetry Breaking in Asymptotically Free Field Theories, Phys. Rev. D 10 (1974) 3235 [INSPIRE].
A. D’Adda, M. Lüscher and P. Di Vecchia, A 1/n Expandable Series of Nonlinear Sigma Models with Instantons, Nucl. Phys. B 146 (1978) 63 [INSPIRE].
J. Koplik, A. Neveu and S. Nussinov, Some Aspects of the Planar Perturbation Series, Nucl. Phys. B 123 (1977) 109 [INSPIRE].
E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar Diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].
D.J. Broadhurst, Large N expansion of QED: Asymptotic photon propagator and contributions to the muon anomaly, for any number of loops, Z. Phys. C 58 (1993) 339 [INSPIRE].
M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443] [INSPIRE].
M. Mariño, Lectures on non-perturbative effects in large N gauge theories, matrix models and strings, Fortsch. Phys. 62 (2014) 455 [arXiv:1206.6272] [INSPIRE].
I. Aniceto, G. Basar and R. Schiappa, A Primer on Resurgent Transseries and Their Asymptotics, Phys. Rept. 809 (2019) 1 [arXiv:1802.10441] [INSPIRE].
A. Voros, The return of the quartic oscillator. The complex WKB method, Annales de l’I.H.P. Physique Théorique 39 (1983) 211.
E. Delabaere, H. Dillinger, and F. Pham, Exact semiclassical expansions for one-dimensional quantum oscillators, J. Math. Phys. 38 (1997) 6126.
J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results I: Conjectures, WKB expansions, and instanton interactions, Annals Phys. 313 (2004) 197 [quant-ph/0501136] [INSPIRE].
J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results II: Specific cases, higher-order effects, and numerical calculations, Annals Phys. 313 (2004) 269 [quant-ph/0501137] [INSPIRE].
M. Serone, G. Spada and G. Villadoro, The Power of Perturbation Theory, JHEP 05 (2017) 056 [arXiv:1702.04148] [INSPIRE].
M. Serone, G. Spada and G. Villadoro, Instantons from Perturbation Theory, Phys. Rev. D 96 (2017) 021701 [arXiv:1612.04376] [INSPIRE].
M. Mariño, Nonperturbative effects and nonperturbative definitions in matrix models and topological strings, JHEP 12 (2008) 114 [arXiv:0805.3033] [INSPIRE].
R. Couso-Santamaría, R. Schiappa and R. Vaz, Finite N from Resurgent Large N, Annals Phys. 356 (2015) 1 [arXiv:1501.01007] [INSPIRE].
S. Gukov, M. Mariño and P. Putrov, Resurgence in complex Chern-Simons theory, arXiv:1605.07615 [INSPIRE].
M. Mariño and T. Reis, Resurgence for superconductors, arXiv:1905.09569 [INSPIRE].
M. Mariño and T. Reis, Resurgence and renormalons in the one-dimensional Hubbard model, arXiv:2006.05131 [INSPIRE].
M. Borinsky and G.V. Dunne, Non-Perturbative Completion of Hopf-Algebraic Dyson-Schwinger Equations, Nucl. Phys. B 957 (2020) 115096 [arXiv:2005.04265] [INSPIRE].
M.C. Abbott, Z. Bajnok, J. Balog and A. Hegedús, From perturbative to non-perturbative in the O (4) sigma model, Phys. Lett. B 818 (2021) 136369 [arXiv:2011.09897] [INSPIRE].
M.C. Abbott, Z. Bajnok, J. Balog, A. Hegedús and S. Sadeghian, Resurgence in the O(4) sigma model, JHEP 05 (2021) 253 [arXiv:2011.12254] [INSPIRE].
S. Garoufalidis, J. Gu and M. Mariño, Peacock patterns and resurgence in complex Chern-Simons theory, arXiv:2012.00062 [INSPIRE].
F. David, Nonperturbative Effects and Infrared Renormalons Within the 1/N Expansion of the O(N) Nonlinear σ Model, Nucl. Phys. B 209 (1982) 433 [INSPIRE].
F. David, On the Ambiguity of Composite Operators, IR Renormalons and the Status of the Operator Product Expansion, Nucl. Phys. B 234 (1984) 237 [INSPIRE].
V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Two-Dimensional Sigma Models: Modeling Nonperturbative Effects of Quantum Chromodynamics, Phys. Rept. 116 (1984) 103.
A.M. Polyakov and P.B. Wiegmann, Theory of Nonabelian Goldstone Bosons, Phys. Lett. B 131 (1983) 121 [INSPIRE].
P. Hasenfratz, M. Maggiore and F. Niedermayer, The Exact mass gap of the O(3) and O(4) nonlinear sigma models in d = 2, Phys. Lett. B 245 (1990) 522 [INSPIRE].
P. Hasenfratz and F. Niedermayer, The Exact mass gap of the O(N) sigma model for arbitrary N is >= 3 in d = 2, Phys. Lett. B 245 (1990) 529 [INSPIRE].
J. Balog, S. Naik, F. Niedermayer and P. Weisz, Exact mass gap of the chiral SU(N) × SU(N) model, Phys. Rev. Lett. 69 (1992) 873 [INSPIRE].
P. Forgacs, F. Niedermayer and P. Weisz, The Exact mass gap of the Gross-Neveu model. 1. The Thermodynamic Bethe ansatz, Nucl. Phys. B 367 (1991) 123 [INSPIRE].
P. Forgacs, F. Niedermayer and P. Weisz, The Exact mass gap of the Gross-Neveu model. 2. The 1/N expansion, Nucl. Phys. B 367 (1991) 144 [INSPIRE].
T.J. Hollowood, The Exact mass gaps of the principal chiral models, Phys. Lett. B 329 (1994) 450 [hep-th/9402084] [INSPIRE].
J.M. Evans and T.J. Hollowood, The Exact mass gap of the supersymmetric o(N) sigma model, Phys. Lett. B 343 (1995) 189 [hep-th/9409141] [INSPIRE].
J.M. Evans and T.J. Hollowood, The Exact mass gap of the supersymmetric CP**(n-1) sigma model, Phys. Lett. B 343 (1995) 198 [hep-th/9409142] [INSPIRE].
J.M. Evans and T.J. Hollowood, Exact results for integrable asymptotically - free field theories, Nucl. Phys. B Proc. Suppl. 45 (1996) 130 [hep-th/9508141] [INSPIRE].
D. Volin, From the mass gap in O(N) to the non-Borel-summability in O(3) and O(4) sigma-models, Phys. Rev. D 81 (2010) 105008 [arXiv:0904.2744] [INSPIRE].
D. Volin, Quantum integrability and functional equations: Applications to the spectral problem of AdS/CFT and two-dimensional sigma models, J. Phys. A 44 (2011) 124003 [arXiv:1003.4725] [INSPIRE].
M. Mariño and T. Reis, Renormalons in integrable field theories, JHEP 04 (2020) 160 [arXiv:1909.12134] [INSPIRE].
M. Mariño and T. Reis, Exact perturbative results for the Lieb-Liniger and Gaudin-Yang models, arXiv:1905.09575 [INSPIRE].
M. Mariño and T. Reis, Three roads to the energy gap, arXiv:2010.16174 [INSPIRE].
V.A. Fateev, P.B. Wiegmann and V.A. Kazakov, Large N chiral field in two-dimensions, Phys. Rev. Lett. 73 (1994) 1750 [INSPIRE].
V.A. Fateev, V.A. Kazakov and P.B. Wiegmann, Principal chiral field at large N, Nucl. Phys. B 424 (1994) 505 [hep-th/9403099] [INSPIRE].
K. Zarembo, Quantum Giant Magnons, JHEP 05 (2008) 047 [arXiv:0802.3681] [INSPIRE].
V. Kazakov, E. Sobko and K. Zarembo, Double-Scaling Limit in the Principal Chiral Model: A New Noncritical String?, Phys. Rev. Lett. 124 (2020) 191602 [arXiv:1911.12860] [INSPIRE].
M. Mariño, R. Miravitllas and T. Reis, Testing the Bethe ansatz with large N renormalons, arXiv:2102.03078 [INSPIRE].
F.W.J. Olver et al. eds., NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, release 1.1.1 of 2021-03-15.
Z. Bajnok, J. Balog, B. Basso, G.P. Korchemsky and L. Palla, Scaling function in AdS/CFT from the O(6) sigma model, Nucl. Phys. B 811 (2009) 438 [arXiv:0809.4952] [INSPIRE].
E. Brézin and J. Zinn-Justin, Spontaneous Breakdown of Continuous Symmetries Near Two-Dimensions, Phys. Rev. B 14 (1976) 3110 [INSPIRE].
M. Mariño, Instantons and large N . An introduction to non-perturbative methods in quantum field theory. Cambridge University Press, Cambridge, U.K. (2015).
P. Biscari, M. Campostrini and P. Rossi, Quantitative Picture of the Scaling Behavior of Lattice Nonlinear σ Models From the 1/N Expansion, Phys. Lett. B 242 (1990) 225 [INSPIRE].
C. Bonet, D. Sauzin, T. Seara and M. València, Adiabatic invariant of the harmonic oscillator, complex matching and resurgence, SIAM J. Math. Anal. 29 (1998) 1335.
T.M. Seara and D. Sauzin, Resumació de Borel i teoria de la ressurgencia, Butl. Soc. Catalana Mat. 18 (2003) 131.
I. Aniceto and R. Schiappa, Nonperturbative Ambiguities and the Reality of Resurgent Transseries, Commun. Math. Phys. 335 (2015) 183 [arXiv:1308.1115] [INSPIRE].
M. Serone, G. Spada and G. Villadoro, λϕ4 Theory I: The Symmetric Phase Beyond NNNNNNNNLO, JHEP 08 (2018) 148 [arXiv:1805.05882] [INSPIRE].
C. Hunter and B. Guerrieri, Deducing the properties of singularities of functions from their Taylor series coefficients, SIAM J. Appl. Math. 39 (1980) 248.
H. Stahl, The convergence of Padé approximants to functions with branch points, Journal of Approximation Theory 91 (1997) 139.
L. Di Pietro and M. Serone, Looking through the QCD Conformal Window with Perturbation Theory, JHEP 07 (2020) 049 [arXiv:2003.01742] [INSPIRE].
G.A. Baker Jr. and P. Peter Graves-Morris, Padé Approximants, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, U.K. (1996)
A.B. Zamolodchikov, Mass scale in the sine-Gordon model and its reductions, Int. J. Mod. Phys. A 10 (1995) 1125 [INSPIRE].
D.J. Amit, Y.Y. Goldschmidt and G. Grinstein, Renormalization Group Analysis of the Phase Transition in the 2D Coulomb Gas, sine-Gordon Theory and xy Model, J. Phys. A 13 (1980) 585 [INSPIRE].
S.R. Coleman, The Quantum sine-Gordon Equation as the Massive Thirring Model, Phys. Rev. D 11 (1975) 2088 [INSPIRE].
C. Kozçaz, T. Sulejmanpasic, Y. Tanizaki and M. Ünsal, Cheshire Cat resurgence, Self-resurgence and Quasi-Exact Solvable Systems, Commun. Math. Phys. 364 (2018) 835 [arXiv:1609.06198] [INSPIRE].
G.V. Dunne and M. Ünsal, Resurgence and Dynamics of O(N) and Grassmannian Sigma Models, JHEP 09 (2015) 199 [arXiv:1505.07803] [INSPIRE].
A. Cherman, D. Dorigoni, G.V. Dunne and M. Ünsal, Resurgence in Quantum Field Theory: Nonperturbative Effects in the Principal Chiral Model, Phys. Rev. Lett. 112 (2014) 021601 [arXiv:1308.0127] [INSPIRE].
G. Sberveglieri, M. Serone and G. Spada, Renormalization scheme dependence, RG flow, and Borel summability in ϕ4 Theories in d < 4, Phys. Rev. D 100 (2019) 045008 [arXiv:1905.02122] [INSPIRE].
G. Sberveglieri, M. Serone and G. Spada, Self-Dualities and Renormalization Dependence of the Phase Diagram in 3d O(N) Vector Models, JHEP 02 (2021) 098 [arXiv:2010.09737] [INSPIRE].
M. Mariño and T. Reis, A new renormalon in two dimensions, JHEP 07 (2020) 216 [arXiv:1912.06228] [INSPIRE].
M. Berry and C. Howls, Hyperasymptotics for integrals with saddles, Proceedings of the Royal Society A: Mathematical and Physical Sciences A434 (1991) 657.
S. Hikami and E. Brézin, Large Order Behavior of the 1/N Expansion in Zero-dimensions and One-dimensions, J. Phys. A 12 (1979) 759 [INSPIRE].
E.H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. 1. The General solution and the ground state, Phys. Rev. 130 (1963) 1605 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2108.02647
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Di Pietro, L., Mariño, M., Sberveglieri, G. et al. Resurgence and 1/N Expansion in Integrable Field Theories. J. High Energ. Phys. 2021, 166 (2021). https://doi.org/10.1007/JHEP10(2021)166
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2021)166