Abstract
We study the jet energy drop, which is the relative difference between the groomed and ungroomed jet energy or transverse momentum. It is one of the fundamental quantities that characterizes the impact of grooming on jets produced in high energy collisions. We consider three different grooming algorithms i) soft drop, ii) iterated soft drop, and iii) trimming. We carry out the resummation of large logarithms of the jet energy drop, the jet radius as well as relevant grooming parameters at next-to-leading logarithmic (NLL′) accuracy. In addition, we account for non-global and clustering logarithms, and determine the next-to-leading order corrections. For soft drop we perform a joint resummation of the jet energy drop and the groomed jet radius, which is necessary to achieve the correct all-order structure of the cross section, in particular for the Sudakov-safe case of soft drop with β = 0. We present numerical results for LHC energies and compare to Pythia simulations as well as CMS data. Our factorization framework predicts the onset of nonperturbative effects in the jet energy distribution, in line with what we find in Pythia. The jet energy drop observables stand out because they only probe soft radiation, making them ideal candidates for the tuning of parton shower Monte Carlo event generators and for probing medium effects in heavy-ion collisions.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning, Phys. Rept. 841 (2020) 1 [arXiv:1709.04464] [INSPIRE].
R. Kogler et al., Jet substructure at the Large Hadron Collider: experimental review, Rev. Mod. Phys. 91 (2019) 045003 [arXiv:1803.06991] [INSPIRE].
S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets: an introduction to jet substructure and boosted-object phenomenology, Springer, Germany (2019).
D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].
S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, SoftKiller, a particle-level pileup removal method, Eur. Phys. J. C 75 (2015) 59 [arXiv:1407.0408] [INSPIRE].
A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
C. Frye, A.J. Larkoski, J. Thaler and K. Zhou, Casimir meets Poisson: improved quark/gluon discrimination with counting observables, JHEP 09 (2017) 083 [arXiv:1704.06266] [INSPIRE].
F.A. Dreyer, L. Necib, G. Soyez and J. Thaler, Recursive soft drop, JHEP 06 (2018) 093 [arXiv:1804.03657] [INSPIRE].
C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].
S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].
Z.-B. Kang, K. Lee, X. Liu and F. Ringer, The groomed and ungroomed jet mass distribution for inclusive jet production at the LHC, JHEP 10 (2018) 137 [arXiv:1803.03645] [INSPIRE].
Z.-B. Kang, K. Lee, X. Liu, D. Neill and F. Ringer, The soft drop groomed jet radius at NLL, JHEP 02 (2020) 054 [arXiv:1908.01783] [INSPIRE].
P. Cal, D. Neill, F. Ringer and W.J. Waalewijn, Calculating the angle between jet axes, JHEP 04 (2020) 211 [arXiv:1911.06840] [INSPIRE].
ATLAS collaboration, Measurement of the soft-drop jet mass in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 092001 [arXiv:1711.08341] [INSPIRE].
CMS collaboration, Measurement of the splitting function in pp and Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Rev. Lett. 120 (2018) 142302 [arXiv:1708.09429] [INSPIRE].
STAR collaboration, Measurement of the shared momentum fraction zg using jet reconstruction in p+p and Au+Au collisions with STAR, Nucl. Part. Phys. Proc. 289-290 (2017) 137 [arXiv:1703.10933] [INSPIRE].
CMS collaboration, Measurement of the groomed jet mass in PbPb and pp collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, JHEP 10 (2018) 161 [arXiv:1805.05145] [INSPIRE].
CMS collaboration, Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 11 (2018) 113 [arXiv:1807.05974] [INSPIRE].
ALICE collaboration, Exploration of jet substructure using iterative declustering in pp and Pb-Pb collisions at LHC energies, Phys. Lett. B 802 (2020) 135227 [arXiv:1905.02512] [INSPIRE].
ATLAS collaboration, Measurement of the Lund jet plane using charged particles with the ATLAS detector from 13 TeV proton-proton collisions, Phys. Rev. Lett. 124 (2020) 222002 [arXiv:2004.03540].
ATLAS collaboration, Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 101 (2020) 052007 [arXiv:1912.09837] [INSPIRE].
STAR collaboration, Measurement of groomed jet substructure observables in pp collisions at \( \sqrt{s} \) = 200 GeV with STAR, arXiv:2003.02114 [INSPIRE].
ATLAS collaboration, Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector, Phys. Rev. Lett. 124 (2020) 222002 [arXiv:2004.03540] [INSPIRE].
Y. Makris, Transverse momentum dependent fragmenting jet functions with applications to quarkonium production, PoS(QCDEV2017)035 [INSPIRE].
A.J. Larkoski, I. Moult and D. Neill, Factorization and resummation for groomed multi-prong jet shapes, JHEP 02 (2018) 144 [arXiv:1710.00014] [INSPIRE].
A.J. Larkoski, I. Moult and D. Neill, Analytic boosted boson discrimination at the Large Hadron Collider, arXiv:1708.06760 [INSPIRE].
J. Baron, S. Marzani and V. Theeuwes, Soft-drop thrust, JHEP 08 (2018) 105 [Erratum ibid. 05 (2019) 056] [arXiv:1803.04719] [INSPIRE].
Z.-B. Kang, K. Lee, X. Liu and F. Ringer, Soft drop groomed jet angularities at the LHC, Phys. Lett. B 793 (2019) 41 [arXiv:1811.06983] [INSPIRE].
Y. Makris and V. Vaidya, Transverse momentum spectra at threshold for groomed heavy quark jets, JHEP 10 (2018) 019 [arXiv:1807.09805] [INSPIRE].
A. Kardos, G. Somogyi and Z. Trócsányi, Soft-drop event shapes in electron-positron annihilation at next-to-next-to-leading order accuracy, Phys. Lett. B 786 (2018) 313 [arXiv:1807.11472] [INSPIRE].
J. Chay and C. Kim, Factorized groomed jet mass distribution in inclusive jet processes, J. Korean Phys. Soc. 74 (2019) 439 [arXiv:1806.01712] [INSPIRE].
D. Napoletano and G. Soyez, Computing N-subjettiness for boosted jets, JHEP 12 (2018) 031 [arXiv:1809.04602] [INSPIRE].
C. Lee, P. Shrivastava and V. Vaidya, Predictions for energy correlators probing substructure of groomed heavy quark jets, JHEP 09 (2019) 045 [arXiv:1901.09095] [INSPIRE].
A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Nonperturbative corrections to soft drop jet mass, JHEP 12 (2019) 002 [arXiv:1906.11843] [INSPIRE].
D. Gutierrez-Reyes, Y. Makris, V. Vaidya, I. Scimemi and L. Zoppi, Probing transverse-momentum distributions with groomed jets, JHEP 08 (2019) 161 [arXiv:1907.05896] [INSPIRE].
A. Kardos, A. Larkoski and Z. Trócsányi, Soft-dropped observables with CoLoRFuLNNLO, Acta Phys. Polon. B 50 (2019) 1891 [INSPIRE].
S. Marzani, D. Reichelt, S. Schumann, G. Soyez and V. Theeuwes, Fitting the strong coupling constant with soft-drop thrust, JHEP 11 (2019) 179 [arXiv:1906.10504] [INSPIRE].
Y. Mehtar-Tani, A. Soto-Ontoso and K. Tywoniuk, Dynamical grooming of QCD jets, Phys. Rev. D 101 (2020) 034004 [arXiv:1911.00375] [INSPIRE].
A. Kardos, A.J. Larkoski and Z. Trócsányi, Two- and three-loop data for the groomed jet mass, Phys. Rev. D 101 (2020) 114034 [arXiv:2002.05730] [INSPIRE].
A.J. Larkoski, Improving the understanding of jet grooming in perturbation theory, JHEP 09 (2020) 072 [arXiv:2006.14680] [INSPIRE].
A. Lifson, G.P. Salam and G. Soyez, Calculating the primary Lund Jet Plane density, arXiv:2007.06578 [INSPIRE].
ATLAS collaboration, New ATLAS event generator tunes to 2010 data, ATL-PHYS-PUB-2011-008 (2011).
S. Amoroso et al., Les Houches 2019: Physics at TeV colliders: standard model working group report, in the proceedings of the 11th Les Houches workshop on physics at TeV colliders: PhysTeV Les Houches, June 10–18, Les Houces France (2020) [arXiv:2003.01700] [INSPIRE].
M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].
A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Extracting a short distance top mass with light grooming, Phys. Rev. D 100 (2019) 074021 [arXiv:1708.02586] [INSPIRE].
S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after soft drop, Eur. Phys. J. C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].
Y.-T. Chien and I.W. Stewart, Col linear drop, JHEP 06 (2020) 064 [arXiv:1907.11107] [INSPIRE].
C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X (sγ) in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for col linear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
C.W. Bauer and I.W. Stewart, Invariant operators in col linear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Soft col linear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
R.B. Appleby and M.H. Seymour, Nonglobal logarithms in interjet energy flow with kt clustering requirement, JHEP 12 (2002) 063 [hep-ph/0211426] [INSPIRE].
A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].
H. Weigert, Nonglobal jet evolution at finite Nc, Nucl. Phys. B 685 (2004) 321 [hep-ph/0312050] [INSPIRE].
A. Hornig, C. Lee, J.R. Walsh and S. Zuberi, Double non-global logarithms in-N-out of jets, JHEP 01 (2012) 149 [arXiv:1110.0004] [INSPIRE].
A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global structure of the \( \mathcal{O}\left({\alpha}_s^2\right) \) dijet soft function, JHEP 08 (2011) 054 [Erratum ibid. 10 (2017) 101] [arXiv:1105.4628] [INSPIRE].
M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP 10 (2012) 126 [arXiv:1207.1640] [INSPIRE].
Y. Hagiwara, Y. Hatta and T. Ueda, Hemisphere jet mass distribution at finite Nc, Phys. Lett. B 756 (2016) 254 [arXiv:1507.07641] [INSPIRE].
S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, JHEP 03 (2018) 036 [arXiv:1501.03754] [INSPIRE].
A.J. Larkoski, I. Moult and D. Neill, Non-global logarithms, factorization, and the soft substructure of jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].
T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and resummation for jet processes, JHEP 11 (2016) 019 [Erratum ibid. 05 (2017) 154] [arXiv:1605.02737] [INSPIRE].
A.J. Larkoski, I. Moult and D. Neill, The analytic structure of non-global logarithms: convergence of the dressed gluon expansion, JHEP 11 (2016) 089 [arXiv:1609.04011] [INSPIRE].
M. Balsiger, T. Becher and A. Ferroglia, Resummation of non-global logarithms in cross sections with massive particles, JHEP 09 (2020) 029 [arXiv:2006.00014] [INSPIRE].
Y. Delenda, R. Appleby, M. Dasgupta and A. Banfi, On QCD resummation with kt clustering, JHEP 12 (2006) 044 [hep-ph/0610242] [INSPIRE].
K. Khelifa-Kerfa, Non-global logs and clustering impact on jet mass with a jet veto distribution, JHEP 02 (2012) 072 [arXiv:1111.2016] [INSPIRE].
Y. Delenda and K. Khelifa-Kerfa, On the resummation of clustering logarithms for non-global observables, JHEP 09 (2012) 109 [arXiv:1207.4528] [INSPIRE].
R. Kelley, J.R. Walsh and S. Zuberi, Abelian non-global logarithms from soft gluon clustering, JHEP 09 (2012) 117 [arXiv:1202.2361] [INSPIRE].
R. Kelley, J.R. Walsh and S. Zuberi, Disentangling clustering effects in jet algorithms, arXiv:1203.2923 [INSPIRE].
D. Neill, Non-global and clustering effects for groomed multi-prong jet shapes, JHEP 02 (2019) 114 [arXiv:1808.04897] [INSPIRE].
A.J. Larkoski, S. Marzani and J. Thaler, Sudakov safety in perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].
A. Larkoski, I. Moult and D. Neill, Measuring two angularities on a single jet, Int. J. Mod. Phys. Conf. Ser. 37 (2015) 1560046 [INSPIRE].
M. Procura, W.J. Waalewijn and L. Zeune, Joint resummation of two angularities at next-to-next-to-leading logarithmic order, JHEP 10 (2018) 098 [arXiv:1806.10622] [INSPIRE].
J. Gallicchio and M.D. Schwartz, Seeing in color: jet superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].
A.J. Larkoski, S. Marzani and C. Wu, Theory predictions for the pull angle, Phys. Rev. D 99 (2019) 091502 [arXiv:1903.02275] [INSPIRE].
A. Larkoski, S. Marzani and C. Wu, Safe use of jet pull, JHEP 01 (2020) 104 [arXiv:1911.05090] [INSPIRE].
A. Mukherjee and W. Vogelsang, Jet production in (un)polarized pp collisions: dependence on jet algorithm, Phys. Rev. D 86 (2012) 094009 [arXiv:1209.1785] [INSPIRE].
M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to al l orders in QCD, JHEP 04 (2015) 039 [arXiv:1411.5182] [INSPIRE].
D.J. Scott and W.J. Waalewijn, The leading jet transverse momentum in inclusive jet production and with a loose jet veto, JHEP 03 (2020) 159 [arXiv:1912.06673] [INSPIRE].
F. Aversa, P. Chiappetta, M. Greco and J.P. Guillet, QCD corrections to parton-parton scattering processes, Nucl. Phys. B 327 (1989) 105 [INSPIRE].
B. Jager, A. Schafer, M. Stratmann and W. Vogelsang, Next-to-leading order QCD corrections to high pT pion production in longitudinally polarized pp collisions, Phys. Rev. D 67 (2003) 054005 [hep-ph/0211007] [INSPIRE].
T. Kaufmann, A. Mukherjee and W. Vogelsang, Hadron fragmentation inside jets in hadronic col lisions, Phys. Rev. D 92 (2015) 054015 [Erratum ibid. 101 (2020) 079901] [arXiv:1506.01415] [INSPIRE].
Z.-B. Kang, F. Ringer and I. Vitev, The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production, JHEP 10 (2016) 125 [arXiv:1606.06732] [INSPIRE].
L. Dai, C. Kim and A.K. Leibovich, Fragmentation of a jet with small radius, Phys. Rev. D 94 (2016) 114023 [arXiv:1606.07411] [INSPIRE].
V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781] [INSPIRE].
G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].
Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e− annihilation by perturbation theory in quantum chromodynamics., Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [INSPIRE].
P. Cal, F. Ringer and W.J. Waalewijn, The jet shape at NLL’, JHEP 05 (2019) 143 [arXiv:1901.06389] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in the proceedings of the Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), April 27–30, Hamburg, Germany (1998) [hep-ph/9907280] [INSPIRE].
W.T. Giele and E.W. Glover, Higher order corrections to jet cross-sections in e+ e− annihilation, Phys. Rev. D 46 (1992) 1980 [INSPIRE].
B. Andersson, G. Gustafson, L. Lönnblad and U. Pettersson, Coherence effects in deep inelastic scattering, Z. Phys. C 43 (1989) 625 [INSPIRE].
C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and resummation for dijet invariant mass spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].
M. Procura, W.J. Waalewijn and L. Zeune, Resummation of double-differential cross sections and fully-unintegrated parton distribution functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].
S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top jets in the peak region: factorization analysis with NLL resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [INSPIRE].
I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The quark beam function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].
Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].
M.D. Schwartz and H.X. Zhu, Nonglobal logarithms at three loops, four loops, five loops, and beyond, Phys. Rev. D 90 (2014) 065004 [arXiv:1403.4949] [INSPIRE].
A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, Non-global logarithms and jet algorithms in high-pT jet shapes, JHEP 08 (2010) 064 [arXiv:1004.3483] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].
D. Bertolini, M.P. Solon and J.R. Walsh, Integrated and differential accuracy in resummed cross sections, Phys. Rev. D 95 (2017) 054024 [arXiv:1701.07919] [INSPIRE].
Z.-B. Kang, F. Ringer and W.J. Waalewijn, The energy distribution of subjets and the jet shape, JHEP 07 (2017) 064 [arXiv:1705.05375] [INSPIRE].
CMS collaboration, Measurement of groomed jet mass in PbPb and pp collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, CMS-PAS-HIN-16-024, (2017).
ATLAS collaboration, Measurement of the jet mass in high transverse momentum Z(→ \( b\overline{b} \))γ production at \( \sqrt{s} \)= 13 TeV using the ATLAS detector, arXiv:1907.07093 [INSPIRE].
CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 100 (2019) 112007 [arXiv:1909.04114] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2007.12187
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Cal, P., Lee, K., Ringer, F. et al. Jet energy drop. J. High Energ. Phys. 2020, 12 (2020). https://doi.org/10.1007/JHEP11(2020)012
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2020)012