Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximation by Polynomials in Sobolev Spaces with Jacobi Weight

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Polynomial approximation is studied in the Sobolev space \(W_p^r(w_{\alpha ,\beta })\) that consists of functions whose r-th derivatives are in weighted \(L^p\) space with the Jacobi weight function \(w_{\alpha ,\beta }\). This requires simultaneous approximation of a function and its consecutive derivatives up to s-th order with \(s \le r\). We provide sharp error estimates given in terms of \(E_n(f^{(r)})_{L^p(w_{\alpha ,\beta })}\), the error of best approximation to \(f^{(r)}\) by polynomials in \(L^p(w_{\alpha ,\beta })\), and an explicit construction of the polynomials that approximate simultaneously with the sharp error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfaro, M., de Morales, M.Á., Rezola, M.L.: Orthogonality of the Jacobi polynomials with negative integer parameters. J. Comput. Appl. Math. 145, 379–386 (2002)

    Article  MathSciNet  Google Scholar 

  2. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)

    Article  MathSciNet  Google Scholar 

  3. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  Google Scholar 

  4. de Morales, M.Á., Pérez, T.E., Piñar, M.A.: Sobolev orthogonality for the Gegenbauer polynomials \(\{C_n^{(-N+1/2)}\}_{n\ge 0}\). J. Comput. Appl. Math. 100, 111–120 (1998)

    Article  MathSciNet  Google Scholar 

  5. DeVore, R., Lorentz, G.: Constructive Approximation. Springer, Berlin (1993)

    Book  Google Scholar 

  6. Ditzian, Z., Totik, V.: Moduli of Smoothness. Springe, Berlin (1987)

    Book  Google Scholar 

  7. Guo, B.Y.: Gegenbauer approximation in certain Hilbert spaces and its applications to singular differential equations. SIAM J. Numer. Anal. 37, 621–645 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Guo, B.Y., Wang, L.L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)

    Article  MathSciNet  Google Scholar 

  9. Kilgore, T.: On the simultaneous approximation of functions and their derivatives. Appl. Math. Rev. 1, 69–118 (2000)

    Article  MathSciNet  Google Scholar 

  10. Kopotun, K.: A note on simultaneous approximation in \(L_p[-1,1]\) (\(1\le p <\infty \)). Analysis 15, 151–158 (1995)

    Article  MathSciNet  Google Scholar 

  11. Li, H., Xu, Y.: Spectral approximation on the unit ball. SIAM J. Numer. Anal. 52, 2647–2675 (2014)

    Article  MathSciNet  Google Scholar 

  12. Marcellán, F., Xu, Y.: On Sobolev orthogonal polynomials. Expos. Math. 33, 308–352 (2015)

    Article  MathSciNet  Google Scholar 

  13. Mastroianni, G., Totik, V.: Jackson type inequalities for doubling and \(A_p\) weights. Rend. Del Circolo Math. Di Palermo Serie II Suppl. 52, 83–99 (1998)

    MATH  Google Scholar 

  14. Opic, B., Kufner, A.: Hardy-Type Inequalities. Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow (1990)

    MATH  Google Scholar 

  15. Shen, J., Tao, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics, vol. 41. Springer, New York (2011)

    Book  Google Scholar 

  16. Szegő, G.: Orthogonal Polynomials, 4th edn. Am. Math. Soc, Providence (1975)

    MATH  Google Scholar 

  17. Xu, Y.: Weighted approximation of functions on the unit sphere. Constr. Approx. 21, 1–28 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Xu, Y.: Approximation and orthogonality in Sobolev spaces on a triangle. Constr. Approx. 46, 349–434 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Danny Leviatan for his careful readings and corrections. The author was supported in part by NSF Grant DMS-1510296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Xu.

Additional information

Communicated by Alex Iosevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y. Approximation by Polynomials in Sobolev Spaces with Jacobi Weight. J Fourier Anal Appl 24, 1438–1459 (2018). https://doi.org/10.1007/s00041-017-9581-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9581-3

Keywords

Mathematics Subject Classification