Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

In vivo optical molecular imaging of inflammation and immunity

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Inflammation is the phenotypic form of various diseases. Recent development in molecular imaging provides new insights into the diagnostic and therapeutic evaluation of different inflammatory diseases as well as diseases involving inflammation such as cancer. While conventional imaging techniques used in the clinical setting provide only indirect measures of inflammation such as increased perfusion and altered endothelial permeability, optical imaging is able to report molecular information on diseased tissue and cells. Optical imaging is a quick, noninvasive, nonionizing, and easy-to-use diagnostic technology which has been successfully applied for preclinical research. Further development of optical imaging technology such as optoacoustic imaging overcomes the limitations of mere fluorescence imaging, thereby enabling pilot clinical applications in humans. By means of endogenous and exogenous contrast agents, sites of inflammation can be accurately visualized in vivo. This allows for early disease detection and specific disease characterization, enabling more rapid and targeted therapeutic interventions. In this review, we summarize currently available optical imaging techniques used to detect inflammation, including optical coherence tomography (OCT), bioluminescence, fluorescence, optoacoustics, and Raman spectroscopy. We discuss advantages and disadvantages of the different in vivo imaging applications with a special focus on targeting inflammation including immune cell tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2018, Wiley-VCH. ce Color fundus photograph, red-free image, and spectral-domain OCT image of a patient with Behcet uveitis, which showed deficient nerve fiber layer. Reproduced with permission [67]. Copyright 2013, Springer Nature

Fig. 2

Copyright 2019, American Chemical Society. c Bioluminescent imaging of mice with peritonitis, and acute liver injury after administration of PBS, luminol, and Ce6-luminol-PEG conjugate. Reproduced with permission [88]. Copyright 2019, American Association for the Advancement of Science

Fig. 3

Copyright 2016, Society of Photo-Optical Instrumentation Engineers (SPIE). b In vivo FMT-XCT imaging of control and atherosclerotic mice (9 weeks) at 4 h post-injection of Neutrophil Elastase 680 FAST. Reproduced with permission [93]. Copyright 2018, Lippincott. c In vivo NIR-II fluorescence images of brain inflammation through with different time post-injection of AIE@NE and ICG@NE. Red circles, inflamed tissue; yellow circles, healthy tissue. d Bright-field and fluorescent images of isolated mice brains treated with AIE@NE and ICG@NE, respectively. Reproduced with permission [102]. Copyright 2019, Wiley-VCH

Fig. 4

Copyright 2017, Nature Publishing Group. b, c Representative optoacoustic/ultrasonic images and corresponding optoacoustic intensities of normal forepaws treated with TCZ-PNPs, RA forepaws treated with PNPs, and RA forepaws treated with TCZ-PNPs. Reproduced with permission [119]. Copyright 2020, Wiley-VCH. d, e Representative optoacoustic/ultrasonic images and corresponding optoacoustic intensities of a normal mouse and two atherosclerotic mice before and after different treatment, respectively. Reproduced with permission [120]. Copyright 2020, Ivyspring International Publisher

Fig. 5

Copyright 2020, Ivyspring International Publisher

Similar content being viewed by others

References

  1. Antonelli M, Kushner I (2017) It’s time to redefine inflammation. FASEB J 31:1787–1791

    Article  CAS  PubMed  Google Scholar 

  2. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2017) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204–7218

    Article  PubMed Central  PubMed  Google Scholar 

  3. Brusini R, Varna M, Couvreur P (2020) Advanced nanomedicines for the treatment of inflammatory diseases. Adv Drug Deliv Rev 157:167–178

    Article  CAS  Google Scholar 

  4. Wu C, Li F, Niu G, Chen X (2013) PET imaging of inflammation biomarkers. Theranostics 3:448–466

    Google Scholar 

  5. Gordon O, Ruiz-Bedoya CA, Ordonez AA, Tucker EW, Jain SK (2019) Molecular imaging: a novel tool to visualize pathogenesis of infections in situ. mBio 10:e00317–19

  6. Dorward DA, Lucas CD, Rossi AG, Haslett C, Dhaliwal K (2012) Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther 135:182–199

    Article  CAS  PubMed  Google Scholar 

  7. Chamberland D, Jiang Y, Wang X (2010) Optical imaging: new tools for arthritis. Integr Biol (Camb) 2:496–509

    Article  Google Scholar 

  8. Wu M, Shu J (2018) Multimodal molecular imaging: current status and future directions. Contrast Media Mol Imaging 2018:1382183

    PubMed Central  PubMed  Google Scholar 

  9. Du W, Wang Y, Luo Q, Liu BF (2006) Optical molecular imaging for systems biology: from molecule to organism. Anal Bioanal Chem 386:444–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dhawan A, D’Alessandro B, Fu X (2010) Optical imaging modalities for biomedical applications. Biomedical Engineering, IEEE Rev Biomed Eng 3:69–92

    Article  PubMed  Google Scholar 

  11. Garland M, Yim Joshua J, Bogyo M (2016) A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem Biol 23:122–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tummers WS, Warram JM, Tipirneni KE, Fengler J, Jacobs P, Shankar L, Henderson L, Ballard B, Pfefer TJ, Pogue BW et al (2017) Regulatory aspects of optical methods and exogenous targets for cancer detection. Cancer Res 77:2197–2206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Van Linthout S, Miteva K, Tschope C (2014) Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res 102:258–269

    Article  CAS  PubMed  Google Scholar 

  14. Liu CH, Abrams ND, Carrick DM, Chander P, Dwyer J, Hamlet MRJ, Macchiarini F, PrabhuDas M, Shen GL, Tandon P et al (2017) Biomarkers of chronic inflammation in disease development and prevention: challenges and opportunities. Nat Immunol 18:1175–1180

    Article  CAS  PubMed  Google Scholar 

  15. Popescu DP, Choo-Smith LP, Flueraru C, Mao Y, Chang S, Disano J, Sherif S, Sowa MG (2011) Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophys Rev. 3:155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wang Y, Liu S, Lou S, Zhang W, Cai H, Chen X (2019) Application of optical coherence tomography in clinical diagnosis. J X-ray Sci Technol 27:995–1006

    Article  Google Scholar 

  17. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME (2000) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2:9–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mattison S, Kim W, Park J, Applegate B (2014) Molecular imaging in optical coherence tomography. Current Molecular Imaging 3:88–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Liba O, SoRelle ED, Sen D, de la Zerda A (2016) Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging. Sci Rep 6:23337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Si P, Yuan E, Liba O, Winetraub Y, Yousefi S, SoRelle ED, Yecies DW, Dutta R, de la Zerda A (2018) Gold nanoprisms as optical coherence tomography contrast agents in the second near-infrared window for enhanced angiography in live animals. ACS Nano 12:11986–11994

    Article  CAS  PubMed  Google Scholar 

  21. Huang Y, Li M, Huang D, Qiu Q, Lin W, Liu J, Yang W, Yao Y, Yan G, Qu N et al (2019) Depth-resolved enhanced spectral-domain OCT imaging of live mammalian embryos using gold nanoparticles as contrast agent. Small 15:1902346

    Article  CAS  Google Scholar 

  22. Luker KE, Luker GD (2010) Bioluminescence imaging of reporter mice for studies of infection and inflammation. Antiviral Res 86:93–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. John S, Rolnick K, Wilson L, Wong S, Van Gelder RN, Pepple KL (2020) Bioluminescence for in vivo detection of cell-type-specific inflammation in a mouse model of uveitis. Sci Rep 10:11377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Keyaerts M, Caveliers V, Lahoutte T (2012) Bioluminescence imaging: looking beyond the light. Trends Mol Med 18:164–172

    Article  PubMed  Google Scholar 

  25. Mezzanotte L, van ’t Root M, Karatas H, Goun EA, Lowik C, (2017) In Vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol 35:640–652

    Article  CAS  PubMed  Google Scholar 

  26. Badr CE, Tannous BA (2011) Bioluminescence imaging: progress and applications. Trends Biotechnol 29:624–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gutowski MB, Wilson L, Van Gelder RN, Pepple KL (2017) In vivo bioluminescence imaging for longitudinal monitoring of inflammation in animal models of uveitis. Investig Ophthalmol Vis Sci 58:1521–1528

    Article  CAS  Google Scholar 

  28. Gross S, Gammon ST, Moss BL, Rauch D, Harding J, Heinecke JW, Ratner L, Piwnica-Worms D (2009) Bioluminescence imaging of myeloperoxidase activity in vivo. Nat Med 15:455–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Weihs F, Dacres H (2019) Red-shifted bioluminescence resonance energy transfer: improved tools and materials for analytical in vivo approaches. TrAC Trends Anal Chem 116:61–73

    Article  CAS  Google Scholar 

  30. Ntziachristos V (2008) Fluorescence imaging. In: Baert AL (ed) Encyclopedia of diagnostic imaging. Springer, Berlin Heidelberg, Berlin, Heidelberg, 723–726

    Chapter  Google Scholar 

  31. Stuker F, Ripoll J, Rudin M (2011) Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3:229–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

    Article  CAS  Google Scholar 

  33. Ma X, Van Phi V, Kimm MA, Prakash J, Kessler H, Kosanke K, Feuchtinger A, Aichler M, Gupta A, Rummeny EJ et al (2017) Integrin-targeted hybrid fluorescence molecular tomography/X-ray computed tomography for imaging tumor progression and early response in non-small cell lung cancer. Neoplasia 19:8–16

    Article  PubMed  Google Scholar 

  34. Zhao J, Zhong D, Zhou S (2018) NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J Mater Chem B 6:349–365

    Article  CAS  PubMed  Google Scholar 

  35. Zhu S, Tian R, Antaris A, Chen X, Dai H (2019) Near-infrared-II molecular dyes for cancer imaging and surgery. Adv Mater 31:11900321

    Google Scholar 

  36. Huang J, Pu K (2021) Near-infrared fluorescent molecular probes for imaging and diagnosis of nephro-urological diseases. Chem Sci 12:3379–3392

    Article  CAS  Google Scholar 

  37. Li J, Chang X, Chen X, Gu Z, Zhao F, Chai Z, Zhao Y (2014) Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnol Adv 32:727–743

    Article  CAS  PubMed  Google Scholar 

  38. Svechkarev D, Mohs AM (2019) Organic fluorescent dye-based nanomaterials: advances in the rational design for imaging and sensing applications. Curr Med Chem 26:4042–4064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 110:2783–2794

    Article  CAS  PubMed  Google Scholar 

  40. Fu Q, Zhu R, Song J, Yang H, Chen X (2019) Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater 31:e1805875

  41. Liu Y, Bhattarai P, Dai Z, Chen X (2019) Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 48:2053–2108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V, Olivo M (2019) A review of clinical photoacoustic imaging: current and future trends. Photoacoustics 16:100144

  43. Taruttis A, van Dam GM, Ntziachristos V (2015) Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res 75:1548–1559

    Article  CAS  PubMed  Google Scholar 

  44. Dean-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D (2017) Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev 46:2158–2198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS (2019) Photoacoustic clinical imaging. Photoacoustics 14:77–98

    PubMed  Google Scholar 

  46. Ovsepian SV, Olefir I, Ntziachristos V (2019) Advances in optoacoustic neurotomography of animal models. Trends Biotechnol 37:1315–1326

    Article  CAS  PubMed  Google Scholar 

  47. Karlas A, Fasoula NA, Paul-Yuan K, Reber J, Kallmayer M, Bozhko D, Seeger M, Eckstein HH, Wildgruber M, Ntziachristos V (2019) Cardiovascular optoacoustics: from mice to men - a review. Photoacoustics 14:19–30

    Article  PubMed Central  PubMed  Google Scholar 

  48. Dima A, Ntziachristos V (2016) In-vivo handheld optoacoustic tomography of the human thyroid. Photoacoustics 4:65–69

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kimm MA, Tzoumas S, Glasl S, Omar M, Symvoulidis P, Olefir I, Rummeny EJ, Meier R, Ntziachristos V (2020) Longitudinal imaging of T cell-based immunotherapy with multi-spectral, multi-scale optoacoustic tomography. Sci Rep 10:4903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Nie L, Chen X (2014) Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem Soc Rev 43:7132–7170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Weber J, Beard PC, Bohndiek SE (2016) Contrast agents for molecular photoacoustic imaging. Nat Methods 13:639–650

    Article  CAS  PubMed  Google Scholar 

  52. Wang S, Lin J, Wang T, Chen X, Huang P (2016) Recent advances in photoacoustic imaging for deep-tissue biomedical applications. Theranostics 6:2394–2413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Liu N, O'Connor P, Gujrati V, Gorpas D, Glasl S, Blutke A, Walch A, Kleigrewe K, Sattler M, Plettenburg O et al (2021) Facile synthesis of a croconaine‐based nanoformulation for optoacoustic imaging and photothermal therapy. Adv Healthc Mater 2002115

  54. Liu N, Gujrati V, Malekzadeh-Najafabadi J, Werner JPF, Klemm U, Tang L, Chen Z, Prakash J, Huang Y, Stiel A et al (2021) Croconaine-based nanoparticles enable efficient optoacoustic imaging of murine brain tumors. Photoacoustics: 100263

  55. Song M, Liu N, He L, Liu G, Ling D, Su X, Sun X (2018) Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Res 11:2796–2808

    Article  CAS  Google Scholar 

  56. Kong K, Kendall C, Stone N, Notingher I (2015) Raman spectroscopy for medical diagnostics–from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 89:121–134

    Article  CAS  PubMed  Google Scholar 

  57. Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, Esmonde-White K, Fullwood NJ, Gardner B, Martin-Hirsch PL et al (2016) Using Raman spectroscopy to characterize biological materials. Nat Protoc 11:664–687

    Article  CAS  PubMed  Google Scholar 

  58. Bunaciu AA, Hoang VD, Aboul-Enein HY (2017) Vibrational micro-spectroscopy of human tissues analysis: review. Crit Rev Anal Chem 47:194–203

    Article  CAS  PubMed  Google Scholar 

  59. MacRitchie N, Frleta-Gilchrist M, Sugiyama A, Lawton T, McInnes IB, Maffia P (2020) Molecular imaging of inflammation - current and emerging technologies for diagnosis and treatment. Pharmacol Ther 211:107550

  60. Jones RR, Hooper DC, Zhang L, Wolverson D, Valev VK (2019) Raman techniques: fundamentals and frontiers. Nanoscale Res Lett 14:231

    Article  PubMed Central  PubMed  Google Scholar 

  61. Laing S, Jamieson LE, Faulds K, Graham D (2017) Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat Rev Chem 1:60

    Article  CAS  Google Scholar 

  62. Cialla D, Marz A, Bohme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54

    Article  CAS  PubMed  Google Scholar 

  63. Wildgruber M, Swirski FK, Zernecke A (2013) Molecular imaging of inflammation in atherosclerosis. Theranostics 3:865–884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Kratkiewicz K, Manwar R, Rajabi-Estarabadi A, Fakhoury J, Meiliute J, Daveluy S, Mehregan D, Avanaki K (2019) Photoacoustic/ultrasound/optical coherence tomography evaluation of melanoma lesion and healthy skin in a swine model. Sensors 19:2815

    Article  CAS  PubMed Central  Google Scholar 

  65. Eberhardt K, Stiebing C, Matthaus C, Schmitt M, Popp J (2015) Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev Mol Diagn 15:773–787

    Article  CAS  PubMed  Google Scholar 

  66. Pichi F, Sarraf D, Arepalli S, Lowder CY, Cunningham ET Jr, Neri P, Albini TA, Gupta V, Baynes K, Srivastava SK (2017) The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res 59:178–201

    Article  PubMed  Google Scholar 

  67. Onal S, Tugal-Tutkun I, Neri P, C PH, (2014) Optical coherence tomography imaging in uveitis. Int ophthalmol 34:401–435

    Article  PubMed  Google Scholar 

  68. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang I-K, Schlendorf KH, Kauffman CR, Shishkov M, Kang D-H, Halpern EF et al (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645

    Article  PubMed  Google Scholar 

  69. Shen B, Zuccaro G, Gramlich TL, Gladkova N, Trolli P, Kareta M, Delaney CP, Connor JT, Lashner BA, Bevins CL et al (2004) In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease. Clin Gastroenterol Hepatol 2:1080–1087

    Article  PubMed  Google Scholar 

  70. Consolo P, Strangio G, Luigiano C, Giacobbe G, Pallio S, Familiari L (2008) Optical coherence tomography in inflammatory bowel disease: prospective evaluation of 35 patients. Dis Colon Rectum 51:1374–1380

    Article  CAS  PubMed  Google Scholar 

  71. Nagaya T, Nakamura YA, Choyke PL, Kobayashi H (2017) Fluorescence-guided surgery. Front Oncol 7:314–314

    Google Scholar 

  72. Kim B, Lee SH, Yoon CJ, Gho YS, Ahn GO, Kim KH (2015) In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy. Biomed Opt Express 6:2512–2521

  73. Golovko D, Meier R, Rummeny E, Daldrup-Link H (2011) Optical imaging of rheumatoid arthritis. Int J Clin Rheumatol 6:67–75

    Article  Google Scholar 

  74. Knieling F, Neufert C, Hartmann A, Claussen J, Urich A, Egger C, Vetter M, Fischer S, Pfeifer L, Hagel A et al (2017) Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N Engl J Med 376:1292–1294

    Article  PubMed  Google Scholar 

  75. Jansen K, Wu M, van der Steen AFW, van Soest G (2014) Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. Photoacoustics 2:12–20

    Article  PubMed  Google Scholar 

  76. Yu J, Nguyen HNY, Steenbergen W, Kim K (2018) Recent development of technology and application of photoacoustic molecular imaging toward clinical translation. J Nucl Med 59(1202–1207):77

    Google Scholar 

  77. Aguirre J, Schwarz M, Garzorz N, Omar M, Buehler A, Eyerich K, Ntziachristos V (2017) Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat Biomed Eng 1:0068

    Article  Google Scholar 

  78. Tefas C, Tantau M (2018) Clinical applications of Raman spectroscopy in inflammatory bowel diseases. A Review. J Gastrointestin Liver Dis 27:433–438

    Article  PubMed  Google Scholar 

  79. Kim B, Lee SH, Yoon CJ, Gho YS, Ahn GO, Kim KH (2015) In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy. Biomed Opt Express 6:2512–2521

    Article  PubMed Central  PubMed  Google Scholar 

  80. Lam S, Standish B, Baldwin C, McWilliams A, leRiche J, Gazdar A, Vitkin AI, Yang V, Ikeda N, MacAulay C (2008) In vivo optical coherence tomography imaging of preinvasive bronchial lesions. Clin Cancer Res 14:2006–2011

    Article  PubMed Central  PubMed  Google Scholar 

  81. Deegan AJ, Talebi-Liasi F, Song S, Li Y, Xu J, Men S, Shinohara MM, Flowers ME, Lee SJ, Wang RK (2018) Optical coherence tomography angiography of normal skin and inflammatory dermatologic conditions. Lasers Surg Med 50:183–193

    Article  PubMed Central  PubMed  Google Scholar 

  82. Tahara S, Morooka T, Wang Z, Bezerra HG, Rollins AM, Simon DI, Costa MA (2012) Intravascular optical coherence tomography detection of atherosclerosis and inflammation in murine aorta. Arterioscler Thromb Vasc Biol 32:1150–1157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Gora MJ, Suter MJ, Tearney GJ, Li X (2017) Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. Biomed Opt Express 8:2405–2444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Chu KK, Unglert C, Ford TN, Cui D, Carruth RW, Singh K, Liu L, Birket SE, Solomon GM, Rowe SM et al (2016) In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography. Biomed Opt Express 7:2494–2505

    Article  PubMed Central  PubMed  Google Scholar 

  85. van der Veen BS, de Winther MPJ, Heeringa P (2009) Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 11:2899–2937

    Article  CAS  PubMed  Google Scholar 

  86. Tseng JC, Kung AL (2012) In vivo imaging of inflammatory phagocytes. Chem Biol 19:1199–1209

    Article  CAS  PubMed  Google Scholar 

  87. Liu R, Tang J, Xu Y, Dai Z (2019) Bioluminescence imaging of inflammation in vivo based on bioluminescence and fluorescence resonance energy transfer using nanobubble ultrasound contrast agent. ACS Nano 13:5124–5132

    Article  CAS  PubMed  Google Scholar 

  88. Xu X, An H, Zhang D, Tao H, Dou Y, Li X, Huang J, Zhang J (2019) A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Sci Adv 5:eaat2953

  89. Van de Bittner GC, Bertozzi CR, Chang CJ (2013) Strategy for dual-analyte luciferin imaging: in vivo bioluminescence detection of hydrogen peroxide and caspase activity in a murine model of acute inflammation. J Am Chem Soc 135:1783–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Lee HW, Jeon YH, Hwang M-H, Kim J-E, Park T-i, Ha J-H, Lee S-W, Ahn B-C, Lee J (2013) Dual reporter gene imaging for tracking macrophage migration using the human sodium iodide symporter and an enhanced firefly luciferase in a murine inflammation model. Mol Imaging Biol 15:703–712

    Article  PubMed  Google Scholar 

  91. Lee HW, Yoon SY, Singh TD, Choi YJ, Lee HJ, Park JY, Jeong SY, Lee SW, Ha JH, Ahn BC et al (2015) Tracking of dendritic cell migration into lymph nodes using molecular imaging with sodium iodide symporter and enhanced firefly luciferase genes. Sci Rep 5:9865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, Ntziachristos V, Weissleder R, Libby P, Jaffer FA (2011) Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med 3:84ra45

  93. Bhatnagar S, Khera E, Liao J, Eniola V, Hu Y, Smith DE, Thurber GM (2019) Oral and subcutaneous administration of a near-infrared fluorescent molecular imaging agent detects inflammation in a mouse model of rheumatoid arthritis. Sci Rep 9:4661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Zhou Y, Yang S, Guo J, Dong H, Yin K, Huang WT, Yang R (2020) In vivo imaging of hypoxia associated with inflammatory bowel disease by a cytoplasmic protein-powered fluorescence cascade amplifier. Anal Chem 92:5787–5794

    Article  CAS  PubMed  Google Scholar 

  95. Lee HW, Gangadaran P, Kalimuthu S, Ahn BC (2016) Advances in molecular imaging strategies for in vivo tracking of immune cells. Biomed Res Int 2016:1946585

    PubMed Central  PubMed  Google Scholar 

  96. Kang S, Lee HW, Jeon YH, Singh TD, Choi YJ, Park JY, Kim JS, Lee H, Hong KS, Lee I et al (2015) Combined fluorescence and magnetic resonance imaging of primary macrophage migration to sites of acute inflammation using near-infrared fluorescent magnetic nanoparticles. Mol Imaging Biol 17:643–651

    Article  CAS  PubMed  Google Scholar 

  97. Kim JB, Park K, Ryu J, Lee JJ, Lee MW, Cho HS, Nam HS, Park OK, Song JW, Kim TS et al (2016) Intravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors. Sci Rep 6:22608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Ale A, Ermolayev V, Herzog E, Cohrs C, de Angelis MH, Ntziachristos V (2012) FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–X-ray computed tomography. Nat Methods 9:615–620

    Article  CAS  PubMed  Google Scholar 

  99. Ma X, Prakash J, Ruscitti F, Glasl S, Stellari FF, Villetti G, Ntziachristos V (2016) Assessment of asthmatic inflammation using hybrid fluorescence molecular tomography-x-ray computed tomography. J Biomed Opt 21:15009

    Article  PubMed  Google Scholar 

  100. Glinzer A, Ma X, Prakash J, Kimm Melanie A, Lohöfer F, Kosanke K, Pelisek J, Thon Moritz P, Vorlova S, Heinze Katrin G et al (2017) Targeting elastase for molecular imaging of early atherosclerotic lesions. Arterioscler Thromb Vasc Biol 37:525–533

    Article  CAS  PubMed  Google Scholar 

  101. Cao J, Zhu B, Zheng K, He S, Meng L, Song J, Yang H (2019) Recent progress in NIR-II contrast agent for biological imaging. Front Bioeng Biotechnol 7:487

    Article  PubMed  Google Scholar 

  102. Liu S, Chen C, Li Y, Zhang H, Liu J, Wang R, Wong STH, Lam JWY, Ding D, Tang BZ (2019) Constitutional isomerization enables bright NIR-II AIEgen for brain-inflammation imaging. Adv Funct Mater 30:1908125

    Article  CAS  Google Scholar 

  103. Zhao M, Wang R, Li B, Fan Y, Wu Y, Zhu X, Zhang F (2019) Precise in vivo inflammation imaging using in situ responsive cross-linking of glutathione-modified ultra-small NIR-II lanthanide nanoparticles. Angew Chem Int Ed 58:2050–2054

    Article  CAS  Google Scholar 

  104. Wang S, Liu L, Fan Y, El-Toni AM, Alhoshan MS, Li D, Zhang F (2019) In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II Nanoprobes with 1550 nm Emission. Nano Lett 19:2418–2427

    Article  CAS  PubMed  Google Scholar 

  105. van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJG, van der Zee AGJ et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17:1315–1319

    Article  CAS  PubMed  Google Scholar 

  106. Crane LMA, Themelis G, Arts HJG, Buddingh KT, Brouwers AH, Ntziachristos V, van Dam GM, van der Zee AGJ (2011) Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results. Gynecol Oncol 120:291–295

    Article  CAS  PubMed  Google Scholar 

  107. Lin HA, Dean-Ben XL, Ivankovic I, Kimm MA, Kosanke K, Haas H, Meier R, Lohofer F, Wildgruber M, Razansky D (2017) Characterization of cardiac dynamics in an acute myocardial infarction model by four-dimensional optoacoustic and magnetic resonance imaging. Theranostics 7:4470–4479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Bhutiani N, Grizzle WE, Galandiuk S, Otali D, Dryden GW, Egilmez NK, McNally LR (2017) Noninvasive imaging of colitis using multispectral optoacoustic tomography. J Nucl Med 58:1009–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Waldner MJ, Knieling F, Egger C, Morscher S, Claussen J, Vetter M, Kielisch C, Fischer S, Pfeifer L, Hagel A et al (2016) Multispectral optoacoustic tomography in Crohn’s disease: noninvasive imaging of disease activity. Gastroenterology 151:238–240

    Article  PubMed  Google Scholar 

  110. Justin RR, Gandikota G, Xueding W (2012) Photoacoustic tomography to identify inflammatory arthritis. J Biomed Opt 17:1–3

    Google Scholar 

  111. Ding N, Liu X, Chen N, Jiang J, Zhao H, Li Z, Zhang J, Liu C (2019) Lack of association between acupoint sensitization and microcirculatory structural changes in a mouse model of knee osteoarthritis: a pilot study. J Biophotonic 12:e201800458

  112. Jo J, Xu G, Cao M, Marquardt A, Francis S, Gandikota G, Wang X (2017) A functional study of human inflammatory arthritis using photoacoustic imaging. Sci Rep 7:15026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. van den Berg PJ, Daoudi K, Moens HJB, Steenbergen W (2017) Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system. Photoacoustics 8:8–14

    Article  PubMed Central  PubMed  Google Scholar 

  114. Beziere N, von Schacky C, Kosanke Y, Kimm M, Nunes A, Licha K, Aichler M, Walch A, Rummeny EJ, Ntziachristos V et al (2014) Optoacoustic imaging and aging of inflammation in a murine model of arthritis. Arthritis Rheum 66:2071–2078

    Article  CAS  Google Scholar 

  115. Wu C, Zhang Y, Li Z, Li C, Wang Q (2016) A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale 8:12531–12539

    Article  CAS  PubMed  Google Scholar 

  116. Lu X, Chen R, Lv J, Xu W, Chen H, Ma Z, Huang S, Li S, Liu H, Hu J et al (2019) High-resolution bimodal imaging and potent antibiotic/photodynamic synergistic therapy for osteomyelitis with a bacterial inflammation-specific versatile agent. Acta Biomater 99:363–372

    Article  CAS  PubMed  Google Scholar 

  117. Ge X, Cui H, Kong J, Lu SY, Zhan R, Gao J, Xu Y, Lin S, Meng K, Zu L et al (2020) A non-invasive nanoprobe for in vivo photoacoustic imaging of vulnerable atherosclerotic plaque. Adv Mater 32:e2000037

  118. Ye J, Li Z, Fu Q, Li Q, Zhang X, Su L, Yang H, Song J (2020) Quantitative photoacoustic diagnosis and precise treatment of inflammation in vivo using activatable theranostic nanoprobe. Adv Funct Mater 30:2001771

    Article  CAS  Google Scholar 

  119. Chen J, Qi J, Chen C, Chen J, Liu L, Gao R, Zhang T, Song L, Ding D, Zhang P et al (2020) Tocilizumab-conjugated polymer nanoparticles for NIR-II photoacoustic-imaging-guided therapy of rheumatoid arthritis. Adv Mater 32:e2003399

  120. Xie Z, Yang Y, He Y, Shu C, Chen D, Zhang J, Chen J, Liu C, Sheng Z, Liu H et al (2020) In vivo assessment of inflammation in carotid atherosclerosis by noninvasive photoacoustic imaging. Theranostics 10:4694–4704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. McQueenie R, Stevenson R, Benson R, MacRitchie N, McInnes I, Maffia P, Faulds K, Graham D, Brewer J, Garside P (2012) Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal Chem 84:5968–5975

    Article  CAS  PubMed  Google Scholar 

  122. Noonan J, Asiala SM, Grassia G, MacRitchie N, Gracie K, Carson J, Moores M, Girolami M, Bradshaw AC, Guzik TJ et al (2018) In vivo multiplex molecular imaging of vascular inflammation using surface-enhanced Raman spectroscopy. Theranostics 8:6195–6209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Nishiwaki S, Saito S, Takeshita K, Kato H, Ueda R, Takami A, Naoe T, Ogawa M, Nakayama T (2020) In vivo tracking of transplanted macrophages with near infrared fluorescent dye reveals temporal distribution and specific homing in the liver that can be perturbed by clodronate liposomes. PLoS One 15:e0242488

  124. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P et al (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Konopka CJ, Wozniak M, Hedhli J, Ploska A, Schwartz-Duval A, Siekierzycka A, Pan D, Munirathinam G, Dobrucki IT, Kalinowski L et al (2018) Multimodal imaging of the receptor for advanced glycation end-products with molecularly targeted nanoparticles. Theranostics 8:5012–5024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Cui X, Mathe D, Kovács N, Horváth I, Jauregui-Osoro M, Torres Martin de Rosales R, Mullen GE, Wong W, Yan Y, Krüger D et al (2016) Synthesis, characterization, and application of core-shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) nanoparticle as trimodal (MRI, PET/SPECT, and optical) imaging agents. Bioconjug Chem 27:319–328

    Article  CAS  PubMed  Google Scholar 

  127. Senders ML, Meerwaldt AE, van Leent MMT, Sanchez-Gaytan BL, van de Voort JC, Toner YC, Maier A, Klein ED, Sullivan NAT, Sofias AM (2020) Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nat Nanotechnol 15:398–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Chen M, McReynolds N, Campbell EC, Mazilu M, Barbosa J, Dholakia K, Powis SJ (2015) The use of wavelength modulated raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic cells. PloS One 10:e0125158

  129. McReynolds N, Cooke FGM, Chen M, Powis SJ, Dholakia K (2017) Multimodal discrimination of immune cells using a combination of Raman spectroscopy and digital holographic microscopy. Sci Rep 7:43631

    Article  PubMed Central  PubMed  Google Scholar 

  130. Ichimura T, Chiu L-d, Fujita K, Machiyama H, Yamaguchi T, Watanabe TM, Fujita H (2016) Non-label immune cell state prediction using Raman spectroscopy. Sci Rep 6:37562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Gerwing M, Kocman V, Stölting M, Helfen A, Masthoff M, Roth J, Barczyk-Kahlert K, Greune L, Schmidt MA, Heindel W et al (2020) Tracking of tumor cell-derived extracellular vesicles in vivo reveals a specific distribution pattern with consecutive biological effects on target sites of metastasis. Mol Imaging Biol 22:1501–1510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Eisenblaetter M, Flores-Borja F, Lee JJ, Wefers C, Smith H, Hueting R, Cooper MS, Blower PJ, Patel D, Rodriguez-Justo M et al (2017) Visualization of tumor-immune interaction - target-specific imaging of S100A8/A9 reveals pre-metastatic niche establishment. Theranostics 7:2392–2401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript. The final version was edited by Melanie A. Kimm, Moritz Wildgruber, and Xiaopeng Ma.

Corresponding author

Correspondence to Xiaopeng Ma.

Ethics declarations

Consent for publication

All authors agreed on the final version of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Chen, X., Kimm, M.A. et al. In vivo optical molecular imaging of inflammation and immunity. J Mol Med 99, 1385–1398 (2021). https://doi.org/10.1007/s00109-021-02115-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02115-w

Keywords