Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A comprehensive overview of deep learning techniques for 3D point cloud classification and semantic segmentation

  • Research
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Point cloud analysis has a wide range of applications in many areas such as computer vision, robotic manipulation, and autonomous driving. While deep learning has achieved remarkable success on image-based tasks, there are many unique challenges faced by deep neural networks in processing massive, unordered, irregular and noisy 3D points. To stimulate future research, this paper analyzes recent progress in deep learning methods employed for point cloud processing and presents challenges and potential directions to advance this field. It serves as a comprehensive review on two major tasks in 3D point cloud processing—namely, 3D shape classification and semantic segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Liang, Z., Guo, Y., Feng, Y., Chen, W., Qiao, L., Zhou, L., Zhang, J., Liu, H.: Stereo matching using multi-level cost volume and multi-scale feature constancy. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 300–315 (2019)

    Google Scholar 

  2. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3d local surface description and object recognition. Int. J. Comput. Vis. 105(1), 63–86 (2013)

    MathSciNet  Google Scholar 

  3. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

  4. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 30 (2017)

  5. Liu, Z., Hu, H., Cao, Y., Zhang, Z., Tong, X.: A closer look at local aggregation operators in point cloud analysis. In: European Conference on Computer Vision, pp. 326–342. Springer (2020)

  6. Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A.: Randla-net: efficient semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11108–11117 (2020)

  7. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: Pointasnl: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5589–5598 (2020)

  8. Bytyqi, Q., Wolpert, N., Schömer, E.: Local-area-learning network: meaningful local areas for efficient point cloud analysis. arXiv preprint arXiv:2006.07226 (2020)

  9. Xu, Q., Sun, X., Wu, C.-Y., Wang, P., Neumann, U.: Grid-gcn for fast and scalable point cloud learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5661–5670 (2020)

  10. Hu, Z., Zhen, M., Bai, X., Fu, H., Tai, C.-l.: Jsenet: joint semantic segmentation and edge detection network for 3d point clouds. In: European Conference on Computer Vision, pp. 222–239. Springer (2020)

  11. Lin, C., Li, C., Liu, Y., Chen, N., Choi, Y.-K., Wang, W.: Point2skeleton: learning skeletal representations from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4277–4286 (2021)

  12. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

  13. Uy, M.A., Pham, Q.-H., Hua, B.-S., Nguyen, T., Yeung, S.-K.: Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1588–1597 (2019)

  14. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  15. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3d semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1534–1543 (2016)

  16. Yang, X., Xia, D., Kin, T., Igarashi, T.: Intra: 3d intracranial aneurysm dataset for deep learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

  17. Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M.: Semantic3d. net: a new large-scale point cloud classification benchmark. arXiv preprint arXiv:1704.03847 (2017)

  18. Pan, Y., Gao, B., Mei, J., Geng, S., Li, C., Zhao, H.: Semanticposs: A point cloud dataset with large quantity of dynamic instances. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 687–693. IEEE (2020)

  19. De Deuge, M., Quadros, A., Hung, C., Douillard, B.: Unsupervised feature learning for classification of outdoor 3d scans. In: Australasian Conference on Robitics and Automation, vol. 2, p. 1. University of New South Wales Kensington, Australia (2013)

  20. Ioannidou, A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.: Deep learning advances in computer vision with 3D data: a survey. ACM Comput. Surv. CSUR 50(2), 1–38 (2017)

    Google Scholar 

  21. Ahmed, E., Saint, A., Shabayek, A.E.R., Cherenkova, K., Das, R., Gusev, G., Aouada, D., Ottersten, B.: A survey on deep learning advances on different 3d data representations. arXiv preprint arXiv:1808.01462 (2018)

  22. Zhang, J., Zhao, X., Chen, Z., Lu, Z.: A review of deep learning-based semantic segmentation for point cloud. IEEE Access 7, 179118–179133 (2019)

    Google Scholar 

  23. Xie, Y., Tian, J., Zhu, X.X.: Linking points with labels in 3D: a review of point cloud semantic segmentation. IEEE Geosci. Remote Sens. Mag. 8(4), 38–59 (2020)

    Google Scholar 

  24. Rahman, M.M., Tan, Y., Xue, J., Lu, K.: Notice of violation of IEEE publication principles: recent advances in 3D object detection in the era of deep neural networks: a survey. IEEE Trans. Image Process. 29, 2947–2962 (2019)

    Google Scholar 

  25. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3D point clouds: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(12), 4338–4364 (2020)

    Google Scholar 

  26. Zhang, J.: The mcgill shape benchmark (2005). http://www.cim.mcgill.ca/shape/benchMark/

  27. Serna, A., Marcotegui, B., Goulette, F., Deschaud, J.-E.: Paris-rue-madame database: a 3d mobile laser scanner dataset for benchmarking urban detection, segmentation and classification methods. In: 4th International Conference on Pattern Recognition, Applications and Methods ICPRAM 2014 (2014)

  28. Vallet, B., Brédif, M., Serna, A., Marcotegui, B., Paparoditis, N.: Terramobilita/iQmulus urban point cloud analysis benchmark. Comput. Graph. 49, 126–133 (2015)

    Google Scholar 

  29. Choi, S., Zhou, Q.-Y., Miller, S., Koltun, V.: A large dataset of object scans. arXiv:1602.02481 (2016)

  30. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

  31. Roynard, X., Deschaud, J.-E., Goulette, F.: Paris-Lille-3D: a large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification. Int. J. Robot. Res. 37(6), 545–557 (2018)

    Google Scholar 

  32. Sun, J., Zhang, Q., Kailkhura, B., Yu, Z., Xiao, C., Mao, Z.M.: Benchmarking robustness of 3d point cloud recognition against common corruptions. arXiv preprint arXiv:2201.12296 (2022)

  33. Nygren, P., Jasinski, M.: A comparative study of segmentation and classification methods for 3d point clouds. Master’s thesis, University of Gothenburg (2016)

  34. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Google Scholar 

  35. Chen, D.-Y., Tian, X.-P., Shen, Y.-T., Ouhyoung, M.: On visual similarity based 3d model retrieval. In: Computer Graphics Forum, vol. 22, pp. 223–232. Wiley (2003)

  36. Khatib, O., Kumar, V., Sukhatme, G.: Experimental Robotics: The 12th International Symposium on Experimental Robotics, vol. 79. Springer (2013)

  37. Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-D mapping with an RGB-D camera. IEEE Trans. Robot. 30(1), 177–187 (2013)

    Google Scholar 

  38. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)

  39. Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Benitez, S., Breitkopf, U.: The isprs benchmark on urban object classification and 3d building reconstruction. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences I-3 (2012), Nr. 1 1(1), 293–298 (2012)

  40. Varney, N., Asari, V.K., Graehling, Q.: Dales: a large-scale aerial lidar data set for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 186–187 (2020)

  41. Munoz, D., Bagnell, J.A., Vandapel, N., Hebert, M.: Contextual classification with functional max-margin Markov networks. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 975–982. IEEE (2009)

  42. Zolanvari, S., Ruano, S., Rana, A., Cummins, A., Silva, R.E., Rahbar, M., Smolic, A.: Dublincity: annotated lidar point cloud and its applications. arXiv preprint arXiv:1909.03613 (2019)

  43. Hurl, B., Czarnecki, K., Waslander, S.: Precise synthetic image and lidar (presil) dataset for autonomous vehicle perception. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 2522–2529. IEEE (2019)

  44. Hu, Q., Yang, B., Khalid, S., Xiao, W., Trigoni, N., Markham, A.: Towards semantic segmentation of urban-scale 3d point clouds: A dataset, benchmarks and challenges. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

  45. Can, G., Mantegazza, D., Abbate, G., Chappuis, S., Giusti, A.: Semantic segmentation on swiss3dcities: a benchmark study on aerial photogrammetric 3D pointcloud dataset. Pattern Recognit. Lett. 150, 108–114 (2021)

    Google Scholar 

  46. Ye, Z., Xu, Y., Huang, R., Tong, X., Li, X., Liu, X., Luan, K., Hoegner, L., Stilla, U.: LASDU: a large-scale aerial lidar dataset for semantic labeling in dense urban areas. ISPRS Int. J. Geo Inf. 9(7), 450 (2020)

    Google Scholar 

  47. Li, X., Li, C., Tong, Z., Lim, A., Yuan, J., Wu, Y., Tang, J., Huang, R.: Campus3d: a photogrammetry point cloud benchmark for hierarchical understanding of outdoor scene. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 238–246 (2020)

  48. Tan, W., Qin, N., Ma, L., Li, Y., Du, J., Cai, G., Yang, K., Li, J.: Toronto-3d: a large-scale mobile lidar dataset for semantic segmentation of urban roadways. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 202–203 (2020)

  49. Jiang, P., Osteen, P., Wigness, M., Saripalli, S.: RELLIS-3D Dataset: Data, Benchmarks and Analysis (2020)

  50. Bos, J.P., Chopp, D., Kurup, A., Spike, N.: Autonomy at the end of the Earth: an inclement weather autonomous driving data set. In: Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 2020, vol. 11415, pp. 36–48. SPIE (2020). International Society for Optics and Photonics

  51. Kölle, M., Laupheimer, D., Schmohl, S., Haala, N., Rottensteiner, F., Wegner, J.D., Ledoux, H.: The hessigheim 3d (h3d) benchmark on semantic segmentation of high-resolution 3d point clouds and textured meshes from uav lidar and multi-view-stereo. ISPRS Open J. Photogramm. Remote Sens. 1, 100001 (2021)

    Google Scholar 

  52. Xiao, A., Huang, J., Guan, D., Zhan, F., Lu, S.: Transfer learning from synthetic to real lidar point cloud for semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2795–2803 (2022)

  53. Chen, M., Hu, Q., Hugues, T., Feng, A., Hou, Y., McCullough, K., Soibelman, L.: Stpls3d: a large-scale synthetic and real aerial photogrammetry 3d point cloud dataset. arXiv preprint arXiv:2203.09065 (2022)

  54. Feng, Y., Feng, Y., You, H., Zhao, X., Gao, Y.: Meshnet: Mesh neural network for 3d shape representation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8279–8286 (2019)

  55. Lahav, A., Tal, A.: Meshwalker: deep mesh understanding by random walks. ACM Trans. Graph. TOG 39(6), 1–13 (2020)

    Google Scholar 

  56. Yavartanoo, M., Hung, S.-H., Neshatavar, R., Zhang, Y., Lee, K.M.: Polynet: polynomial neural network for 3d shape recognition with polyshape representation. In: 2021 International Conference on 3D Vision (3DV), pp. 1014–1023. IEEE (2021)

  57. Muzahid, A., Wan, W., Sohel, F., Wu, L., Hou, L.: Curvenet: curvature-based multitask learning deep networks for 3d object recognition. IEEE/CAA J. Autom. Sin. 8(6), 1177–1187 (2020)

    Google Scholar 

  58. Ran, H., Liu, J., Wang, C.: Surface representation for point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18942–18952 (2022)

  59. Foorginejad, A., Khalili, K.: Umbrella curvature: a new curvature estimation method for point clouds. Procedia Technol. 12, 347–352 (2014)

    Google Scholar 

  60. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

  61. Feng, Y., Zhang, Z., Zhao, X., Ji, R., Gao, Y.: GVCNN: group-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 264–272 (2018)

  62. Yu, T., Meng, J., Yuan, J.: Multi-view harmonized bilinear network for 3d object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 186–194 (2018)

  63. Yang, Z., Wang, L.: Learning relationships for multi-view 3d object recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7505–7514 (2019)

  64. Wei, X., Yu, R., Sun, J.: View-gcn: View-based graph convolutional network for 3d shape analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1850–1859 (2020)

  65. Wang, C., Pelillo, M., Siddiqi, K.: Dominant set clustering and pooling for multi-view 3d object recognition. arXiv preprint arXiv:1906.01592 (2019)

  66. Ma, C., Guo, Y., Yang, J., An, W.: Learning multi-view representation with LSTM for 3-D shape recognition and retrieval. IEEE Trans. Multimedia 21(5), 1169–1182 (2018)

    Google Scholar 

  67. Hamdi, A., Giancola, S., Ghanem, B.: Mvtn: multi-view transformation network for 3d shape recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1–11 (2021)

  68. Wang, W., Wang, T., Cai, Y.: Multi-view attention-convolution pooling network for 3d point cloud classification. Appl. Intell. 1–12 (2021)

  69. Gao, S.-H., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H., Torr, P.: Res2net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 652–662 (2019)

    Google Scholar 

  70. Turk, G.: The Stanford bunny (2000). Accessed 14 May 2007

  71. Ghadai, S., Yeow Lee, X., Balu, A., Sarkar, S., Krishnamurthy, A.: Multi-level 3d CNN for learning multi-scale spatial features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

  72. Cheng, R., Razani, R., Taghavi, E., Li, E., Liu, B.: 2-s3net: Attentive feature fusion with adaptive feature selection for sparse semantic segmentation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12547–12556 (2021)

  73. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Generative and discriminative voxel modeling with convolutional neural networks. arXiv preprint arXiv:1608.04236 (2016)

  74. Le, T., Duan, Y.: Pointgrid: a deep network for 3d shape understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9204–9214 (2018)

  75. Maturana, D., Scherer, S.: Voxnet: a 3d convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

  76. Ben-Shabat, Y., Lindenbaum, M., Fischer, A.: 3DMFV: three-dimensional point cloud classification in real-time using convolutional neural networks. IEEE Robot. Autom. Lett. 3(4), 3145–3152 (2018)

    Google Scholar 

  77. You, H., Feng, Y., Ji, R., Gao, Y.: Pvnet: a joint convolutional network of point cloud and multi-view for 3d shape recognition. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1310–1318 (2018)

  78. You, H., Feng, Y., Zhao, X., Zou, C., Ji, R., Gao, Y.: Pvrnet: point-view relation neural network for 3d shape recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9119–9126 (2019)

  79. Zhang, R., Zeng, Z., Guo, Z., Gao, X., Fu, K., Shi, J.: Dspoint: dual-scale point cloud recognition with high-frequency fusion. arXiv preprint arXiv:2111.10332 (2021)

  80. Mohammadi, S.S., Wang, Y., Del Bue, A.: Pointview-gcn: 3d shape classification with multi-view point clouds. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 3103–3107. IEEE (2021)

  81. Zhang, C., Wan, H., Shen, X., Wu, Z.: Pvt: point-voxel transformer for point cloud learning. arXiv preprint arXiv:2108.06076 (2021)

  82. Yan, X., Zhan, H., Zheng, C., Gao, J., Zhang, R., Cui, S., Li, Z.: Let images give you more: point cloud cross-modal training for shape analysis. arXiv preprint arXiv:2210.04208 (2022)

  83. Yang, Z., Jiang, L., Sun, Y., Schiele, B., Jia, J.: A unified query-based paradigm for point cloud understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8541–8551 (2022)

  84. Sinha, A., Bai, J., Ramani, K.: Deep learning 3d shape surfaces using geometry images. In: European Conference on Computer Vision, pp. 223–240. Springer (2016)

  85. Li, S., Luo, Z., Zhen, M., Yao, Y., Shen, T., Fang, T., Quan, L.: Cross-atlas convolution for parameterization invariant learning on textured mesh surface. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6143–6152 (2019)

  86. Haim, N., Segol, N., Ben-Hamu, H., Maron, H., Lipman, Y.: Surface networks via general covers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 632–641 (2019)

  87. Goyal, A., Law, H., Liu, B., Newell, A., Deng, J.: Revisiting point cloud shape classification with a simple and effective baseline. In: International Conference on Machine Learning, pp. 3809–3820 (2021). PMLR

  88. Li, Y., Pirk, S., Su, H., Qi, C.R., Guibas, L.J.: Fpnn: field probing neural networks for 3d data. Adv. Neural Inf. Process. Syst. 29 (2016)

  89. Ma, C., An, W., Lei, Y., Guo, Y.: Bv-cnns: binary volumetric convolutional networks for 3d object recognition. In: BMVC, vol. 1, p. 4 (2017)

  90. Zhi, S., Liu, Y., Li, X., Guo, Y.: Lightnet: a lightweight 3d convolutional neural network for real-time 3d object recognition. In: 3DOR@ Eurographics (2017)

  91. Kumawat, S., Raman, S.: Lp-3dcnn: unveiling local phase in 3d convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4903–4912 (2019)

  92. Muzahid, A., Wan, W., Hou, L.: A new volumetric cnn for 3d object classification based on joint multiscale feature and subvolume supervised learning approaches. Comput. Intell. Neurosci. 2020 (2020)

  93. Hegde, V., Zadeh, R.: Fusionnet: 3d object classification using multiple data representations. arXiv preprint arXiv:1607.05695 (2016)

  94. Hoang, L., Lee, S.-H., Lee, E.-J., Kwon, K.-R.: GSV-NET: a multi-modal deep learning network for 3D point cloud classification. Appl. Sci. 12(1), 483 (2022)

    Google Scholar 

  95. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3d data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)

  96. Ben-Shabat, Y., Lindenbaum, M., Fischer, A.: 3d point cloud classification and segmentation using 3d modified fisher vector representation for convolutional neural networks. arXiv preprint arXiv:1711.08241 (2017)

  97. Duan, Y., Zheng, Y., Lu, J., Zhou, J., Tian, Q.: Structural relational reasoning of point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 949–958 (2019)

  98. Yu, J., Zhang, C., Wang, H., Zhang, D., Song, Y., Xiang, T., Liu, D., Cai, W.: 3d medical point transformer: Introducing convolution to attention networks for medical point cloud analysis. arXiv preprint arXiv:2112.04863 (2021)

  99. Aoki, Y., Goforth, H., Srivatsan, R.A., Lucey, S.: Pointnetlk: robust & efficient point cloud registration using pointnet. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7163–7172 (2019)

  100. Joseph-Rivlin, M., Zvirin, A., Kimmel, R.: Momen (e) t: flavor the moments in learning to classify shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

  101. Sun, X., Lian, Z., Xiao, J.: Srinet: learning strictly rotation-invariant representations for point cloud classification and segmentation. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 980–988 (2019)

  102. Lin, H., Xiao, Z., Tan, Y., Chao, H., Ding, S.: Justlookup: one millisecond deep feature extraction for point clouds by lookup tables. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 326–331. IEEE (2019)

  103. Ran, H., Zhuo, W., Liu, J., Lu, L.: Learning inner-group relations on point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15477–15487 (2021)

  104. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local geometry in point cloud: a simple residual mlp framework. arXiv preprint arXiv:2202.07123 (2022)

  105. Qian, G., Li, Y., Peng, H., Mai, J., Hammoud, H., Elhoseiny, M., Ghanem, B.: Pointnext: revisiting pointnet++ with improved training and scaling strategies. arXiv:2206.04670 (2022)

  106. Wijaya, K.T., Paek, D.-H., Kong, S.-H.: Advanced feature learning on point clouds using multi-resolution features and learnable pooling. arXiv preprint arXiv:2205.09962 (2022)

  107. Song, X., Wang, P., Zhou, D., Zhu, R., Guan, C., Dai, Y., Su, H., Li, H., Yang, R.: Apollocar3d: a large 3d car instance understanding benchmark for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5452–5462 (2019)

  108. Hua, B.-S., Tran, M.-K., Yeung, S.-K.: Pointwise convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 984–993 (2018)

  109. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3d point cloud understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

  110. Zhang, Z., Hua, B.-S., Rosen, D.W., Yeung, S.-K.: Rotation invariant convolutions for 3d point clouds deep learning. In: 2019 International Conference on 3d Vision (3DV), pp. 204–213 (2019). IEEE

  111. Zhang, Z., Hua, B.-S., Yeung, S.-K.: Shellnet: efficient point cloud convolutional neural networks using concentric shells statistics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

  112. Peyghambarzadeh, S.M.M., Azizmalayeri, F., Khotanlou, H., Salarpour, A.: Point-PlaneNet: plane kernel based convolutional neural network for point clouds analysis. Digital Signal Process. 98, 102633 (2020)

    Google Scholar 

  113. Wiersma, R., Nasikun, A., Eisemann, E., Hildebrandt, K.: Deltaconv: anisotropic point cloud learning with exterior calculus. arXiv preprint arXiv:2111.08799 (2021)

  114. Camuffo, E., Mari, D., Milani, S.: Recent advancements in learning algorithms for point clouds: an updated overview. Sensors 22(4), 1357 (2022)

    Google Scholar 

  115. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8895–8904 (2019)

  116. Thomas, H., Qi, C.R., Deschaud, J.-E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420 (2019)

  117. Liu, Y., Fan, B., Meng, G., Lu, J., Xiang, S., Pan, C.: Densepoint: learning densely contextual representation for efficient point cloud processing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

  118. Boulch, A.: ConvPoint: continuous convolutions for point cloud processing. Comput. Graph. 88, 24–34 (2020)

    Google Scholar 

  119. Wu, W., Qi, Z., Fuxin, L.: Pointconv: deep convolutional networks on 3d point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)

  120. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: Spidercnn: deep learning on point sets with parameterized convolutional filters. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 87–102 (2018)

  121. Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators. arXiv preprint arXiv:1803.10091 (2018)

  122. Poulenard, A., Rakotosaona, M.-J., Ponty, Y., Ovsjanikov, M.: Effective rotation-invariant point cnn with spherical harmonics kernels. In: 2019 International Conference on 3D Vision (3DV), pp. 47–56 (2019). IEEE

  123. Lei, H., Akhtar, N., Mian, A.: Octree guided cnn with spherical kernels for 3d point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2019)

  124. Riegler, G., Osman Ulusoy, A., Geiger, A.: Octnet: learning deep 3d representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)

  125. Klokov, R., Lempitsky, V.: Escape from cells: deep kd-networks for the recognition of 3d point cloud models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 863–872 (2017)

  126. Zeng, W., Gevers, T.: 3dcontextnet: Kd tree guided hierarchical learning of point clouds using local and global contextual cues. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, pp. 0–0 (2018)

  127. Li, J., Chen, B.M., Lee, G.H.: So-net: Self-organizing network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9397–9406 (2018)

  128. Qiu, S., Anwar, S., Barnes, N.: Dense-resolution network for point cloud classification and segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3813–3822 (2021)

  129. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  130. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 29 (2016)

  131. Zhao, H., Jiang, L., Fu, C.-W., Jia, J.: Pointweb: Enhancing local neighborhood features for point cloud processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5565–5573 (2019)

  132. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. TOG 38(5), 1–12 (2019)

    Google Scholar 

  133. Zhang, K., Hao, M., Wang, J., Silva, C.W., Fu, C.: Linked dynamic graph cnn: Learning on point cloud via linking hierarchical features. arXiv preprint arXiv:1904.10014 (2019)

  134. Liu, J., Ni, B., Li, C., Yang, J., Tian, Q.: Dynamic points agglomeration for hierarchical point sets learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7546–7555 (2019)

  135. Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation and graph pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4548–4557 (2018)

  136. Te, G., Hu, W., Zheng, A., Guo, Z.: Rgcnn: Regularized graph cnn for point cloud segmentation. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 746–754 (2018)

  137. Zhang, Y., Rabbat, M.: A graph-cnn for 3d point cloud classification. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6279–6283 (2018). IEEE

  138. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. Adv. Neural Inf. Process. Syst. 30 (2017)

  139. Dang, J., Yang, J.: Hpgcnn: hierarchical parallel group convolutional neural networks for point clouds processing. In: Proceedings of the Asian Conference on Computer Vision (ACCV) (2020)

  140. Qian, G., Hammoud, H., Li, G., Thabet, A., Ghanem, B.: ASSANet: an anisotropic separable set abstraction for efficient point cloud representation learning. Adv. Neural Inf. Process. Syst. 34, 28119–28130 (2021)

    Google Scholar 

  141. Montanaro, A., Valsesia, D., Magli, E.: Rethinking the compositionality of point clouds through regularization in the hyperbolic space. arXiv preprint arXiv:2209.10318 (2022)

  142. Xie, S., Liu, S., Chen, Z., Tu, Z.: Attentional shapecontextnet for point cloud recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4606–4615 (2018)

  143. Esteves, C., Allen-Blanchette, C., Makadia, A., Daniilidis, K.: Learning so (3) equivariant representations with spherical cnns. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 52–68 (2018)

  144. Hermosilla, P., Ritschel, T., Vázquez, P.-P., Vinacua, À., Ropinski, T.: Monte Carlo convolution for learning on non-uniformly sampled point clouds. ACM Trans. Graph. TOG 37(6), 1–12 (2018)

    Google Scholar 

  145. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: convolution on x-transformed points. Adv. Neural Inf. Process. Syst. 31 (2018)

  146. Groh, F., Wieschollek, P., Lensch, H.: Flex-convolution (million-scale point-cloud learning beyond grid-worlds). arXiv preprint arXiv:1803.07289 (2018)

  147. Lan, S., Yu, R., Yu, G., Davis, L.S.: Modeling local geometric structure of 3d point clouds using geo-cnn. In: Proceedings of the IEEE/cvf Conference on Computer Vision and Pattern Recognition, pp. 998–1008 (2019)

  148. Komarichev, A., Zhong, Z., Hua, J.: A-cnn: annularly convolutional neural networks on point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7421–7430 (2019)

  149. Rao, Y., Lu, J., Zhou, J.: Spherical fractal convolutional neural networks for point cloud recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

  150. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3693–3702 (2017)

  151. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 52–66 (2018)

  152. Pan, G., Wang, J., Ying, R., Liu, P.: 3dti-net: learn inner transform invariant 3d geometry features using dynamic gcn. arXiv preprint arXiv:1812.06254 (2018)

  153. Yang, D., Gao, W.: Pointmanifold: using manifold learning for point cloud classification. arXiv preprint arXiv:2010.07215 (2020)

  154. Lin, Z.-H., Huang, S.-Y., Wang, Y.-C.F.: Convolution in the cloud: Learning deformable kernels in 3d graph convolution networks for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1800–1809 (2020)

  155. Xu, M., Ding, R., Zhao, H., Qi, X.: Paconv: Position adaptive convolution with dynamic kernel assembling on point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3173–3182 (2021)

  156. Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: Learning curves for point clouds shape analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 915–924 (2021)

  157. Wu, P., Chen, C., Yi, J., Metaxas, D.: Point cloud processing via recurrent set encoding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5441–5449 (2019)

  158. Liu, X., Han, Z., Liu, Y.-S., Zwicker, M.: Point2sequence: Learning the shape representation of 3d point clouds with an attention-based sequence to sequence network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8778–8785 (2019)

  159. Yang, J., Zhang, Q., Ni, B., Li, L., Liu, J., Zhou, M., Tian, Q.: Modeling point clouds with self-attention and gumbel subset sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3323–3332 (2019)

  160. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

  161. Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R.R., Hu, S.-M.: PCT: point cloud transformer. Comput. Vis. Media 7(2), 187–199 (2021)

    Google Scholar 

  162. Engel, N., Belagiannis, V., Dietmayer, K.: Point transformer. IEEE Access 9, 134826–134840 (2021)

    Google Scholar 

  163. Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., Carreira, J.: Perceiver: General perception with iterative attention. In: International Conference on Machine Learning, pp. 4651–4664. PMLR (2021)

  164. Berg, A., Oskarsson, M., O’Connor, M.: Points to patches: Enabling the use of self-attention for 3d shape recognition. arXiv preprint arXiv:2204.03957 (2022)

  165. Zhang, C., Wan, H., Shen, X., Wu, Z.: Patchformer: an efficient point transformer with patch attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11799–11808 (2022)

  166. Wu, X., Lao, Y., Jiang, L., Liu, X., Zhao, H.: Point transformer v2: grouped vector attention and partition-based pooling. arXiv preprint arXiv:2210.05666 (2022)

  167. Huang, Z., Zhao, Z., Li, B., Han, J.: Lcpformer: towards effective 3D point cloud analysis via local context propagation in transformers. IEEE Trans. Circuits Syst. Video Technol. (2023)

  168. Park, J., Lee, S., Kim, S., Xiong, Y., Kim, H.J.: Self-positioning point-based transformer for point cloud understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21814–21823 (2023)

  169. Li, Z., Gao, P., Yuan, H., Wei, R., Paul, M.: Exploiting inductive bias in transformer for point cloud classification and segmentation. arXiv preprint arXiv:2304.14124 (2023)

  170. Wu, C., Zheng, J., Pfrommer, J., Beyerer, J.: Attention-based point cloud edge sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5333–5343 (2023)

  171. Chen, W., Han, X., Li, G., Chen, C., Xing, J., Zhao, Y., Li, H.: Deep rbfnet: point cloud feature learning using radial basis functions. arXiv preprint arXiv:1812.04302 (2018)

  172. Zhang, M., You, H., Kadam, P., Liu, S., Kuo, C.-C.J.: Pointhop: an explainable machine learning method for point cloud classification. IEEE Trans. Multimed. 22(7), 1744–1755 (2020)

    Google Scholar 

  173. Liu, K., Gao, Z., Lin, F., Chen, B.M.: Fg-net: fast large-scale lidar point clouds understanding network leveraging correlated feature mining and geometric-aware modelling. arXiv preprint arXiv:2012.09439 (2020)

  174. Zhang, M., Wang, Y., Kadam, P., Liu, S., Kuo, C.-C.J.: Pointhop++: a lightweight learning model on point sets for 3d classification. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 3319–3323. IEEE (2020)

  175. Cheng, S., Chen, X., He, X., Liu, Z., Bai, X.: Pra-net: point relation-aware network for 3d point cloud analysis. IEEE Trans. Image Process. 30, 4436–4448 (2021)

    Google Scholar 

  176. Xu, M., Zhang, J., Zhou, Z., Xu, M., Qi, X., Qiao, Y.: Learning geometry-disentangled representation for complementary understanding of 3d object point cloud. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3056–3064 (2021)

  177. Chen, X., Wu, Y., Xu, W., Li, J., Dong, H., Chen, Y.: Pointscnet: point cloud structure and correlation learning based on space-filling curve-guided sampling. Symmetry 14(1), 8 (2021)

    Google Scholar 

  178. Lu, T., Liu, C., Chen, Y., Wu, G., Wang, L.: App-net: auxiliary-point-based push and pull operations for efficient point cloud classification. arXiv preprint arXiv:2205.00847 (2022)

  179. Lin, H., Zheng, X., Li, L., Chao, F., Wang, S., Wang, Y., Tian, Y., Ji, R.: Meta architecture for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17682–17691 (2023)

  180. Yang, Y., Feng, C., Shen, Y., Tian, D.: Foldingnet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 206–215 (2018)

  181. Deng, H., Birdal, T., Ilic, S.: Ppf-foldnet: unsupervised learning of rotation invariant 3d local descriptors. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 602–618 (2018)

  182. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3d point clouds. In: International Conference on Machine Learning, pp. 40–49. PMLR (2018)

  183. Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3d point cloud processing. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–118 (2018)

  184. Hassani, K., Haley, M.: Unsupervised multi-task feature learning on point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8160–8171 (2019)

  185. Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3d point capsule networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1009–1018 (2019)

  186. Chen, C., Li, G., Xu, R., Chen, T., Wang, M., Lin, L.: Clusternet: deep hierarchical cluster network with rigorously rotation-invariant representation for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4994–5002 (2019)

  187. Sun, H., Li, S., Zheng, X., Lu, X.: Remote sensing scene classification by gated bidirectional network. IEEE Trans. Geosci. Remote Sens. 58(1), 82–96 (2019)

    Google Scholar 

  188. Sun, Y., Wang, Y., Liu, Z., Siegel, J., Sarma, S.: Pointgrow: autoregressively learned point cloud generation with self-attention. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 61–70 (2020)

  189. Eckart, B., Yuan, W., Liu, C., Kautz, J.: Self-supervised learning on 3d point clouds by learning discrete generative models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8248–8257 (2021)

  190. Wang, H., Liu, Q., Yue, X., Lasenby, J., Kusner, M.J.: Unsupervised point cloud pre-training via occlusion completion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9782–9792 (2021)

  191. Sun, C., Zheng, Z., Wang, X., Xu, M., Yang, Y.: Self-supervised point cloud representation learning via separating mixed shapes. IEEE Trans. Multimed. (2022)

  192. Huang, S., Xie, Y., Zhu, S.-C., Zhu, Y.: Spatio-temporal self-supervised representation learning for 3d point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6535–6545 (2021)

  193. Yan, S., Yang, Z., Li, H., Guan, L., Kang, H., Hua, G., Huang, Q.: Implicit autoencoder for point cloud self-supervised representation learning. arXiv preprint arXiv:2201.00785 (2022)

  194. Liu, Q., Zhao, J., Cheng, C., Sheng, B., Ma, L.: Pointalcr: adversarial latent gan and contrastive regularization for point cloud completion. Vis. Comput. 38, 3341–3349 (2022)

    Google Scholar 

  195. Pang, Y., Wang, W., Tay, F.E., Liu, W., Tian, Y., Yuan, L.: Masked autoencoders for point cloud self-supervised learning. arXiv preprint arXiv:2203.06604 (2022)

  196. Yu, X., Tang, L., Rao, Y., Huang, T., Zhou, J., Lu, J.: Point-bert: pre-training 3d point cloud transformers with masked point modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19313–19322 (2022)

  197. Wang, Z., Yu, X., Rao, Y., Zhou, J., Lu, J.: P2p: tuning pre-trained image models for point cloud analysis with point-to-pixel prompting. arXiv preprint arXiv:2208.02812 (2022)

  198. Denipitiyage, D., Jayasundara, V., Rodrigo, R., Edussooriya, C.U.: Pointcaps: raw point cloud processing using capsule networks with Euclidean distance routing. J. Vis. Commun. Image Represent. 88, 103612 (2022)

    Google Scholar 

  199. Jiang, J., Lu, X., Zhao, L., Dazeley, R., Wang, M.: Masked autoencoders in 3d point cloud representation learning. arXiv preprint arXiv:2207.01545 (2022)

  200. Zhang, R., Guo, Z., Gao, P., Fang, R., Zhao, B., Wang, D., Qiao, Y., Li, H.: Point-m2ae: multi-scale masked autoencoders for hierarchical point cloud pre-training. arXiv preprint arXiv:2205.14401 (2022)

  201. Hao, F., Li, J., Song, R., Li, Y., Cao, K.: Mixed feature prediction on boundary learning for point cloud semantic segmentation. Remote Sens. 14(19), 4757 (2022)

    Google Scholar 

  202. Liu, H., Cai, M., Lee, Y.J.: Masked discrimination for self-supervised learning on point clouds. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II, pp. 657–675. Springer (2022)

  203. Dong, R., Qi, Z., Zhang, L., Zhang, J., Sun, J., Ge, Z., Yi, L., Ma, K.: Autoencoders as cross-modal teachers: can pretrained 2d image transformers help 3d representation learning? arXiv preprint arXiv:2212.08320 (2022)

  204. Zhang, R., Wang, L., Qiao, Y., Gao, P., Li, H.: Learning 3d representations from 2d pre-trained models via image-to-point masked autoencoders. arXiv preprint arXiv:2212.06785 (2022)

  205. Chen, G., Wang, M., Yang, Y., Yu, K., Yuan, L., Yue, Y.: Pointgpt: auto-regressively generative pre-training from point clouds. arXiv preprint arXiv:2305.11487 (2023)

  206. Zeid, K.A., Schult, J., Hermans, A., Leibe, B.: Point2vec for self-supervised representation learning on point clouds. arXiv preprint arXiv:2303.16570 (2023)

  207. Qi, Z., Dong, R., Fan, G., Ge, Z., Zhang, X., Ma, K., Yi, L.: Contrast with reconstruct: contrastive 3d representation learning guided by generative pretraining. arXiv preprint arXiv:2302.02318 (2023)

  208. Xue, L., Gao, M., Xing, C., Martín-Martín, R., Wu, J., Xiong, C., Xu, R., Niebles, J.C., Savarese, S.: Ulip: learning unified representation of language, image and point cloud for 3d understanding. arXiv preprint arXiv:2212.05171 (2022)

  209. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł, Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008 (2017)

    Google Scholar 

  210. Lu, D., Xie, Q., Wei, M., Xu, L., Li, J.: Transformers in 3d point clouds: a survey. arXiv preprint arXiv:2205.07417 (2022)

  211. Li, R., Li, X., Heng, P.-A., Fu, C.-W.: Pointaugment: an auto-augmentation framework for point cloud classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6378–6387 (2020)

  212. Prokudin, S., Lassner, C., Romero, J.: Efficient learning on point clouds with basis point sets. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4332–4341 (2019)

  213. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  214. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

  215. Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V., Leskovec, J.: Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265 (2019)

  216. Schönberger, J.L., Pollefeys, M., Geiger, A., Sattler, T.: Semantic visual localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6896–6906 (2018)

  217. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. Adv. Neural Inf. Process. Syst. 29, 82–90 (2016)

    Google Scholar 

  218. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

  219. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)

  220. Zamorski, M., Ziski, T.: Adversarial autoencoders for compact representations of 3d point clouds. Comput. Vis. Image Underst. 193, 102921 (2020)

    Google Scholar 

  221. Xiao, A., Huang, J., Guan, D., Lu, S.: Unsupervised representation learning for point clouds: a survey. arXiv preprint arXiv:2202.13589 (2022)

  222. Baevski, A., Hsu, W.-N., Xu, Q., Babu, A., Gu, J., Auli, M.: Data2vec: a general framework for self-supervised learning in speech, vision and language. In: International Conference on Machine Learning, pp. 1298–1312. PMLR (2022)

  223. Lawin, F.J., Danelljan, M., Tosteberg, P., Bhat, G., Khan, F.S., Felsberg, M.: Deep projective 3d semantic segmentation. In: International Conference on Computer Analysis of Images and Patterns, pp. 95–107. Springer (2017)

  224. Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1887–1893. IEEE (2018)

  225. Graham, B., Engelcke, M., Van Der Maaten, L.: 3d semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9224–9232 (2018)

  226. Meng, H.-Y., Gao, L., Lai, Y.-K., Manocha, D.: Vv-net: voxel vae net with group convolutions for point cloud segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8500–8508 (2019)

  227. Dai, A., Nießner, M.: 3dmv: joint 3d-multi-view prediction for 3d semantic scene segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 452–468 (2018)

  228. Jaritz, M., Gu, J., Su, H.: Multi-view pointnet for 3d scene understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0 (2019)

  229. Boulch, A., Le Saux, B., Audebert, N.: Unstructured point cloud semantic labeling using deep segmentation networks. 3dor@ eurographics 3, 1–8 (2017)

    Google Scholar 

  230. Audebert, N., Saux, B.L., Lefèvre, S.: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. In: Asian Conference on Computer Vision, pp. 180–196. Springer (2016)

  231. Boulch, A., Guerry, J., Le Saux, B., Audebert, N.: Snapnet: 3d point cloud semantic labeling with 2d deep segmentation networks. Comput. Gr. 71, 189–198 (2018)

    Google Scholar 

  232. Guerry, J., Boulch, A., Le Saux, B., Moras, J., Plyer, A., Filliat, D.: Snapnet-r: consistent 3d multi-view semantic labeling for robotics. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 669–678 (2017)

  233. Li, S., Chen, X., Liu, Y., Dai, D., Stachniss, C., Gall, J.: Multi-scale interaction for real-time lidar data segmentation on an embedded platform. IEEE Robot. Autom. Lett. 7(2), 738–745 (2021)

    Google Scholar 

  234. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

  235. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4376–4382. IEEE (2019)

  236. Xu, C., Wu, B., Wang, Z., Zhan, W., Vajda, P., Keutzer, K., Tomizuka, M.: Squeezesegv3: spatially-adaptive convolution for efficient point-cloud segmentation. In: European Conference on Computer Vision, pp. 1–19. Springer (2020)

  237. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: fast and accurate lidar semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220. IEEE (2019)

  238. Razani, R., Cheng, R., Taghavi, E., Bingbing, L.: Lite-hdseg: lidar semantic segmentation using lite harmonic dense convolutions. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9550–9556. IEEE (2021)

  239. Zhao, Y., Bai, L., Huang, X.: Fidnet: lidar point cloud semantic segmentation with fully interpolation decoding. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4453–4458. IEEE (2021)

  240. Wang, S., Zhu, J., Zhang, R.: Meta-rangeseg: lidar sequence semantic segmentation using multiple feature aggregation. arXiv preprint arXiv:2202.13377 (2022)

  241. Qiu, H., Yu, B., Tao, D.: Gfnet: geometric flow network for 3d point cloud semantic segmentation. arXiv preprint arXiv:2207.02605 (2022)

  242. Cheng, H.-X., Han, X.-F., Xiao, G.-Q.: Cenet: toward concise and efficient lidar semantic segmentation for autonomous driving. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 01–06. IEEE (2022)

  243. Kong, L., Liu, Y., Chen, R., Ma, Y., Zhu, X., Li, Y., Hou, Y., Qiao, Y., Liu, Z.: Rethinking range view representation for lidar segmentation. arXiv preprint arXiv:2303.05367 (2023)

  244. Ding, B.: Lenet: lightweight and efficient lidar semantic segmentation using multi-scale convolution attention. arXiv preprint arXiv:2301.04275 (2023)

  245. Zhang, Y., Zhou, Z., David, P., Yue, X., Xi, Z., Gong, B., Foroosh, H.: Polarnet: an improved grid representation for online lidar point clouds semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9601–9610 (2020)

  246. Aksoy, E.E., Baci, S., Cavdar, S.: Salsanet: fast road and vehicle segmentation in lidar point clouds for autonomous driving. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 926–932. IEEE (2020)

  247. Song, W., Liu, Z., Guo, Y., Sun, S., Zu, G., Li, M.: Dgpolarnet: dynamic graph convolution network for lidar point cloud semantic segmentation on polar bev. Remote Sens. 14(15), 3825 (2022)

    Google Scholar 

  248. Tchapmi, L., Choy, C., Armeni, I., Gwak, J., Savarese, S.: Segcloud: semantic segmentation of 3d point clouds. In: 2017 International Conference on 3D Vision (3DV), pp. 537–547. IEEE (2017)

  249. Rethage, D., Wald, J., Sturm, J., Navab, N., Tombari, F.: Fully-convolutional point networks for large-scale point clouds. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 596–611 (2018)

  250. Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J., Nießner, M.: Scancomplete: large-scale scene completion and semantic segmentation for 3d scans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2018)

  251. Zhou, H., Zhu, X., Song, X., Ma, Y., Wang, Z., Li, H., Lin, D.: Cylinder 3d: an effective 3d framework for driving-scene lidar semantic segmentation. arXiv preprint arXiv:2008.01550 (2020)

  252. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)

  253. Rosu, R.A., Schütt, P., Quenzel, J., Behnke, S.: Latticenet: fast point cloud segmentation using permutohedral lattices. arXiv preprint arXiv:1912.05905 (2019)

  254. Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., Han, S.: Searching efficient 3d architectures with sparse point-voxel convolution. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII, pp. 685–702. Springer (2020)

  255. Zhao, L., Xu, S., Liu, L., Ming, D., Tao, W.: Svaseg: sparse voxel-based attention for 3d lidar point cloud semantic segmentation. Remote Sens. 14(18), 4471 (2022)

    Google Scholar 

  256. Yang, Y.-Q., Guo, Y.-X., Xiong, J.-Y., Liu, Y., Pan, H., Wang, P.-S., Tong, X., Guo, B.: Swin3d: a pretrained transformer backbone for 3d indoor scene understanding. arXiv preprint arXiv:2304.06906 (2023)

  257. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

  258. Camuffo, E., Michieli, U., Milani, S.: Learning from mistakes: self-regularizing hierarchical semantic representations in point cloud segmentation. arXiv preprint arXiv:2301.11145 (2023)

  259. Roynard, X., Deschaud, J.-E., Goulette, F.: Classification de scènes de nuages de points 3d par réseau convolutionnel profond voxelique multi-échelles. In: RFIAP et CFPT 2018 (2018)

  260. Ye, M., Wan, R., Xu, S., Cao, T., Chen, Q.: Drinet++: efficient voxel-as-point point cloud segmentation. arXiv preprint arXiv:2111.08318 (2021)

  261. Hegde, S., Gangisetty, S.: Pig-net: inception based deep learning architecture for 3d point cloud segmentation. Comput. Gr. 95, 13–22 (2021)

    Google Scholar 

  262. Yan, X., Gao, J., Li, J., Zhang, R., Li, Z., Huang, R., Cui, S.: Sparse single sweep lidar point cloud segmentation via learning contextual shape priors from scene completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3101–3109 (2021)

  263. Kochanov, D., Nejadasl, F.K., Booij, O.: Kprnet: improving projection-based lidar semantic segmentation. arXiv preprint arXiv:2007.12668 (2020)

  264. Alonso, I., Riazuelo, L., Montesano, L., Murillo, A.C.: 3d-mininet: learning a 2d representation from point clouds for fast and efficient 3d lidar semantic segmentation. IEEE Robot. Autom. Lett. 5(4), 5432–5439 (2020)

    Google Scholar 

  265. Cortinhal, T., Tzelepis, G., Erdal Aksoy, E.: Salsanext: fast, uncertainty-aware semantic segmentation of lidar point clouds. In: International Symposium on Visual Computing, pp. 207–222. Springer (2020)

  266. Dewan, A., Burgard, W.: Deeptemporalseg: temporally consistent semantic segmentation of 3d lidar scans. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 2624–2630. IEEE (2020)

  267. Liong, V.E., Nguyen, T.N.T., Widjaja, S., Sharma, D., Chong, Z.J.: Amvnet: assertion-based multi-view fusion network for lidar semantic segmentation. arXiv preprint arXiv:2012.04934 (2020)

  268. Alnaggar, Y.A., Afifi, M., Amer, K., ElHelw, M.: Multi projection fusion for real-time semantic segmentation of 3d lidar point clouds. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1800–1809 (2021)

  269. Gerdzhev, M., Razani, R., Taghavi, E., Bingbing, L.: Tornado-net: multiview total variation semantic segmentation with diamond inception module. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9543–9549. IEEE (2021)

  270. Xiao, A., Yang, X., Lu, S., Guan, D., Huang, J.: Fps-net: a convolutional fusion network for large-scale lidar point cloud segmentation. ISPRS J. Photogramm. Remote Sens. 176, 237–249 (2021)

    Google Scholar 

  271. Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.-H., Kautz, J.: Splatnet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2530–2539 (2018)

  272. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel cnn for efficient 3d deep learning. Adv. Neural Inf. Process. Syst. 32 (2019)

  273. Chiang, H.-Y., Lin, Y.-L., Liu, Y.-C., Hsu, W.H.: A unified point-based framework for 3d segmentation. In: 2019 International Conference on 3D Vision (3DV), pp. 155–163. IEEE (2019)

  274. Xu, J., Zhang, R., Dou, J., Zhu, Y., Sun, J., Pu, S.: Rpvnet: a deep and efficient range-point-voxel fusion network for lidar point cloud segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16024–16033 (2021)

  275. Zhuang, Z., Li, R., Jia, K., Wang, Q., Li, Y., Tan, M.: Perception-aware multi-sensor fusion for 3d lidar semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16280–16290 (2021)

  276. Luo, C., Li, X., Cheng, N., Li, H., Lei, S., Li, P.: Mvp-net: multiple view pointwise semantic segmentation of large-scale point clouds. arXiv preprint arXiv:2201.12769 (2022)

  277. Hou, Y., Zhu, X., Ma, Y., Loy, C.C., Li, Y.: Point-to-voxel knowledge distillation for lidar semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8479–8488 (2022)

  278. Lai, X., Chen, Y., Lu, F., Liu, J., Jia, J.: Spherical transformer for lidar-based 3d recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17545–17555 (2023)

  279. Robert, D., Vallet, B., Landrieu, L.: Learning multi-view aggregation in the wild for large-scale 3d semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5575–5584 (2022)

  280. Ye, D., Zhou, Z., Chen, W., Xie, Y., Wang, Y., Wang, P., Foroosh, H.: Lidarmultinet: towards a unified multi-task network for lidar perception. arXiv preprint arXiv:2209.09385 (2022)

  281. Zhou, J., Xiong, Y., Chiu, C., Liu, F., Gong, X.: Sat: size-aware transformer for 3d point cloud semantic segmentation. arXiv preprint arXiv:2301.06869 (2023)

  282. Chen, L.-Z., Li, X.-Y., Fan, D.-P., Wang, K., Lu, S.-P., Cheng, M.-M.: Lsanet: feature learning on point sets by local spatial aware layer. arXiv preprint arXiv:1905.05442 (2019)

  283. Wang, J., Li, X., Sullivan, A., Abbott, L., Chen, S.: Pointmotionnet: point-wise motion learning for large-scale lidar point clouds sequences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4419–4428 (2022)

  284. Zhao, N., Chua, T.-S., Lee, G.H.: Ps2-net: a locally and globally aware network for point-based semantic segmentation. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 723–730 (2021)

  285. Sahin, Y.H., Mertan, A., Unal, G.: Odfnet: using orientation distribution functions to characterize 3d point clouds. Comput. Gr. 102, 610–618 (2022)

    Google Scholar 

  286. Ran, H., Liu, J., Wang, C.: Surface representation for point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18942–18952 (2022)

  287. Engelmann, F., Kontogianni, T., Leibe, B.: Dilated point convolutions: on the receptive field size of point convolutions on 3d point clouds. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9463–9469. IEEE (2020)

  288. Zhao, L., Tao, W.: Jsnet: joint instance and semantic segmentation of 3d point clouds. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12951–12958 (2020)

  289. Li, Y., Li, X., Zhang, Z., Shuang, F., Lin, Q., Jiang, J.: Densekpnet: dense kernel point convolutional neural networks for point cloud semantic segmentation. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)

    Google Scholar 

  290. Ye, X., Li, J., Huang, H., Du, L., Zhang, X.: 3d recurrent neural networks with context fusion for point cloud semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 403–417 (2018)

  291. Huang, Q., Wang, W., Neumann, U.: Recurrent slice networks for 3d segmentation of point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2626–2635 (2018)

  292. Zhao, Z., Liu, M., Ramani, K.: Dar-net: dynamic aggregation network for semantic scene segmentation. arXiv preprint arXiv:1907.12022 (2019)

  293. Engelmann, F., Kontogianni, T., Hermans, A., Leibe, B.: Exploring spatial context for 3d semantic segmentation of point clouds. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 716–724 (2017)

  294. Jiang, M., Wu, Y., Zhao, T., Zhao, Z., Lu, C.: Pointsift: a sift-like network module for 3d point cloud semantic segmentation. arXiv preprint arXiv:1807.00652 (2018)

  295. Engelmann, F., Kontogianni, T., Schult, J., Leibe, B.: Know what your neighbors do: 3d semantic segmentation of point clouds. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, pp. 0–0 (2018)

  296. Wang, S., Suo, S., Ma, W.-C., Pokrovsky, A., Urtasun, R.: Deep parametric continuous convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2589–2597 (2018)

  297. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.-Y.: Tangent convolutions for dense prediction in 3d. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3887–3896 (2018)

  298. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4558–4567 (2018)

  299. Landrieu, L., Boussaha, M.: Point cloud oversegmentation with graph-structured deep metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7440–7449 (2019)

  300. Wang, L., Huang, Y., Hou, Y., Zhang, S., Shan, J.: Graph attention convolution for point cloud semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

  301. Liang, Z., Yang, M., Deng, L., Wang, C., Wang, B.: Hierarchical depthwise graph convolutional neural network for 3d semantic segmentation of point clouds. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8152–8158. IEEE (2019)

  302. Jiang, L., Zhao, H., Liu, S., Shen, X., Fu, C.-W., Jia, J.: Hierarchical point-edge interaction network for point cloud semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

  303. Rui, X., Gu, C., He, Z., Wu, K.: An efficient and dynamical way for local feature extraction on point cloud. In: 2020 the 3rd International Conference on Control and Computer Vision, pp. 50–55 (2020)

  304. Lei, H., Akhtar, N., Mian, A.: Seggcn: efficient 3d point cloud segmentation with fuzzy spherical kernel. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11611–11620 (2020)

  305. Lei, H., Akhtar, N., Mian, A.: Spherical kernel for efficient graph convolution on 3d point clouds. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3664–3680 (2020)

    Google Scholar 

  306. Zeng, Z., Xu, Y., Xie, Z., Wan, J., Wu, W., Dai, W.: Rg-gcn: a random graph based on graph convolution network for point cloud semantic segmentation. Remote Sens. 14(16), 4055 (2022)

    Google Scholar 

  307. Park, C., Jeong, Y., Cho, M., Park, J.: Fast point transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16949–16958 (2022)

  308. Wang, Q., Shi, S., Li, J., Jiang, W., Zhang, X.: Window normalization: enhancing point cloud understanding by unifying inconsistent point densities. arXiv preprint arXiv:2212.02287 (2022)

  309. Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: Pointcontrast: unsupervised pre-training for 3d point cloud understanding. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pp. 574–591. Springer (2020)

  310. Jiang, L., Shi, S., Tian, Z., Lai, X., Liu, S., Fu, C.-W., Jia, J.: Guided point contrastive learning for semi-supervised point cloud semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6423–6432 (2021)

  311. Li, M., Xie, Y., Shen, Y., Ke, B., Qiao, R., Ren, B., Lin, S., Ma, L.: Hybridcr: weakly-supervised 3d point cloud semantic segmentation via hybrid contrastive regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14930–14939 (2022)

  312. Zhao, Y., Wang, J., Li, X., Hu, Y., Zhang, C., Wang, Y., Chen, S.: Number-adaptive prototype learning for 3d point cloud semantic segmentation. arXiv preprint arXiv:2210.09948 (2022)

  313. Hu, Q., Yang, B., Fang, G., Guo, Y., Leonardis, A., Trigoni, N., Markham, A.: Sqn: weakly-supervised semantic segmentation of large-scale 3d point clouds. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 600–619. Springer (2022)

  314. Liu, K., Zhao, Y., Gao, Z., Chen, B.M.: Weaklabel3d-net: A complete framework for real-scene lidar point clouds weakly supervised multi-tasks understanding. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 5108–5115 (2022)

  315. Fan, S., Dong, Q., Zhu, F., Lv, Y., Ye, P., Wang, F.-Y.: Scf-net: learning spatial contextual features for large-scale point cloud segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14504–14513 (2021)

  316. Gong, J., Xu, J., Tan, X., Song, H., Qu, Y., Xie, Y., Ma, L.: Omni-supervised point cloud segmentation via gradual receptive field component reasoning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11673–11682 (2021)

  317. Shao, Y., Tong, G., Peng, H.: Mining local geometric structure for large-scale 3d point clouds semantic segmentation. Neurocomputing 500, 191–202 (2022)

    Google Scholar 

  318. Tang, L., Zhan, Y., Chen, Z., Yu, B., Tao, D.: Contrastive boundary learning for point cloud segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8489–8499 (2022)

  319. Shuang, F., Li, P., Li, Y., Zhang, Z., Li, X.: Msida-net: point cloud semantic segmentation via multi-spatial information and dual adaptive blocks. Remote Sens. 14(9), 2187 (2022)

    Google Scholar 

  320. Lai, X., Liu, J., Jiang, L., Wang, L., Zhao, H., Liu, S., Qi, X., Jia, J.: Stratified transformer for 3d point cloud segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8500–8509 (2022)

  321. Ma, Y., Guo, Y., Liu, H., Lei, Y., Wen, G.: Global context reasoning for semantic segmentation of 3d point clouds. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2931–2940 (2020)

  322. Xu, X., Lee, G.H.: Weakly supervised semantic point cloud segmentation: Towards 10x fewer labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13706–13715 (2020)

  323. Zhiheng, K., Ning, L.: Pyramnet: point cloud pyramid attention network and graph embedding module for classification and segmentation. arXiv preprint arXiv:1906.03299 (2019)

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. OIA-2148788.

Author information

Authors and Affiliations

Authors

Contributions

Sushmita Sarker authored the main manuscript text. Gunner Stone generated the figures (Fig. 6). Prithul Sarker, Gunner Stone, and Ryan Gorman contributed materials, and verified the accuracy of all information. The manuscript was collectively reviewed by all authors.

Corresponding author

Correspondence to Sushmita Sarker.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, S., Sarker, P., Stone, G. et al. A comprehensive overview of deep learning techniques for 3D point cloud classification and semantic segmentation. Machine Vision and Applications 35, 67 (2024). https://doi.org/10.1007/s00138-024-01543-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-024-01543-1

Keywords