Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nonprobabilistic reliability oriented topological optimization for multi-material heat-transfer structures with interval uncertainties

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This study presents a nonprobabilistic reliability-based topology optimization (NRBTO) framework that combines a multi-material interpolation model and interval mathematics to achieve an optimal layout design for heat-transfer structures under unknown but bounded (UBB) uncertainties. In terms of the uncertainty quantification (UQ) issue, the interval dimension-wise method (IDWM) based on set collocation theory is first proposed to effectively determine the bounds of nodal temperature responses. For safety reasons, the interval reliability (IR) index corresponding to the thermal constraint is defined, and then a new design policy, i.e., the strategy of nonprobabilistic reliability oriented topological optimization is established. To circumvent problems of large-scale variable updating in a multi-material topology optimization procedure, theoretical deductions of the design sensitivity analysis are further given based on the adjoint-vector criterion and the chain principle. The validity and feasibility of the developed methodology are eventually demonstrated by several application examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bae K, Wang S (2013) Reliability-based topology optimization, in: Aiaa/issmo Symposium on Multidisciplinary Analysis and Optimization

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural Optimization 1(4):193–202

    Article  Google Scholar 

  • Bendsøe BP, Sigmund O (2003) Topology optimization: theory, methods and applications, springer science and business media, Berlin

  • Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics, Elsevier

  • Ben-Haim Y, Elishakoff I (1995) Discussion on: a non-probabilistic concept of reliability. Struct Saf 17(3):195–199

    Article  Google Scholar 

  • Blackwell B, Beck JV (2010) A technique for uncertainty analysis for inverse heat conduction problems. Int J Heat Mass Transf 53(4):753–759

    Article  MATH  Google Scholar 

  • Bobby S, Suksuwan A, Spence SMJ, Kareem A (2017) Reliability-based topology optimization of uncertain building systems subject to stochastic excitation. Struct Saf 66:1–16

    Article  Google Scholar 

  • Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104

    Article  Google Scholar 

  • Chen N, Yu DJ, Xia BZ, Ma ZD (2016) Topology optimization of structures with interval random parameters. Comput Methods Appl Mech Eng 307:300–315

    Article  MathSciNet  Google Scholar 

  • Eom YS, Yoo KS, Park JY, Han SY (2011) Reliability-based topology optimization using a standard response surface method for three-dimensional structures. Struct Multidiscip Optim 43(2):287–295

    Article  MATH  Google Scholar 

  • Faure A, Michailidis G, Parry G, Vermaak N, Estevez R (2017) Design of thermoelastic multi-material structures with graded interfaces using topology optimization. Struct Multidiscip Optim 56:823–837

    Article  MathSciNet  Google Scholar 

  • García E, Méresse D, Pombo I, Harmand S, Sánchez JA (2014) Identification of heat partition in grinding related to process parameters, using the inverse heat flux conduction model. Appl Therm Eng 66(1–2):122–130

    Article  Google Scholar 

  • Guo SX, Lu ZZ (2015) A non-probabilistic robust reliability method for analysis and design optimization of structures with uncertain-but-bounded parameters. Appl Math Model 39(7):1985–2002

    Article  MathSciNet  Google Scholar 

  • Haertel JHK, Engelbrecht K, Lazarov BS, Sigmund O (2018) Topology optimization of a pseudo 3D thermofluid heat sink model. Int J Heat Mass Transf 121:1073–1088

    Article  Google Scholar 

  • Hao P, Wang YT, Liu XX, Wang B, Li G, Wang LP (2017) An efficient adaptive-loop method for non-probabilistic reliability-based design optimization. Comput Methods Appl Mech Eng 324:689–711

    Article  MathSciNet  Google Scholar 

  • Iga A, Nishiwaki S, Izui K, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Heat Mass Transf 52(11):2721–2732

    Article  MATH  Google Scholar 

  • Jalalpour M, Guest JK, Igusa T (2013) Reliability-based topology optimization of trusses with stochastic stiffness. Struct Saf 43:41–49

    Article  Google Scholar 

  • Jiang C, Han X, Liu W, Liu J, Zhang Z (2012) A hybrid reliability approach based on probability and interval for uncertain structures. J Mech Des 134(3):031001

    Article  Google Scholar 

  • Jung HS, Cho S (2004) Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties. Finite Elements in Analysis & Design 41(3):311–331

    Article  Google Scholar 

  • Kang Z, Luo Y (2009) Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput Methods Appl Mech Eng 198(41–44):3228–3238

    Article  MathSciNet  MATH  Google Scholar 

  • Kang Z, Luo YJ, Li A (2011) On non-probabilistic reliability-based design optimization of structures with uncertain-but-bounded parameters. Struct Saf 33(3):196–205

    Article  Google Scholar 

  • Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscip Optim 26(5):295–307

    Article  Google Scholar 

  • Kim C, Wang S, Rae KR, Moon H, Choi KK (2006) Reliability-based topology optimization with uncertainties. J Mech Sci Technol 20(4):494–504

    Article  Google Scholar 

  • Li ZK, Bian HM, Shi LJ, Niu XT (2014) Reliability-based topology optimization of compliant mechanisms with geometrically nonlinearity. Appl Mech Mater 556-562(524):4422–4434

    Article  Google Scholar 

  • Li YX, Wei P, Ma HT (2017) Integrated optimization of heat-transfer systems consisting of discrete thermal conductors and solid material. Int J Heat Mass Transf 113:1059–1069

    Article  Google Scholar 

  • Long K, Wang X, Gu XG (2018) Multi-material topology optimization for the transient heat conduction problem using a sequential quadratic programming algorithm. Eng Optim 4:1–17

    MathSciNet  Google Scholar 

  • Luo Y, Kang Z, Luo Z, Li A (2009) Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Struct Multidiscip Optim 39(3):297–310

    Article  MathSciNet  MATH  Google Scholar 

  • Luo YJ, Kang Z, Yue ZF (2012) Maximal stiffness design of two-material structures by topology optimization with nonprobabilistic reliability. AIAA J 50(50):1993–2003

    Article  Google Scholar 

  • Mei YL, Wang XM (2004) A level set method for structural topology optimization and its applications. Comput Methods Appl Mech Eng 35(7):415–441

    MATH  Google Scholar 

  • Qiu Z (2003) Comparison of static response of structures using convex models and interval analysis method. Int J Numer Methods Eng 56(12):1735–1753

    Article  MATH  Google Scholar 

  • Qiu ZP, Wang L (2016) The need for introduction of non-probabilistic interval conceptions into structural analysis and design. Sci China Phys Mech Astron 59(11):114632

    Article  Google Scholar 

  • Riedi PC 1976 Thermal physics: an introduction to thermodynamics, Statistical Mechanics and Kinetic Theory Palgrave

  • Silva M, Tortorelli DA, Norato JA, Ha C, Bae HR (2010) Component and system reliability-based topology optimization using a single-loop method. Struct Multidiscip Optim 41(1):87–106

    Article  MathSciNet  MATH  Google Scholar 

  • Takezawa A, Kobashi M (2017) Design methodology for porous composites with tunable thermal expansion produced by multi-material topology optimization and additive manufacturing. Composites Part B Engineering 131:21–29

    Article  Google Scholar 

  • Tritt TM 2010 Thermal conductivity: theory, properties, and applications, Springer

  • Wang L, Liu DL, Yang YW, Wang XJ, Qiu ZP (2017) A novel method of non-probabilistic reliability-based topology optimization corresponding to continuum structures with unknown but bounded uncertainties. Comput Methods Appl Mech Eng

  • L. Wang, Q. Ren, Y. Ma, D. Wu (2018a) Optimal maintenance design-oriented nonprobabilistic reliability methodology for existing structures under static and dynamic mixed uncertainties. IEEE Trans Reliab

  • Wang L, Xiong C, Wang X, Xu M, Li Y (2018b) A Dimension-wise Method and Its improvement for multidisciplinary interval uncertainty analysis. Appl Math Model, 59

  • Wang L, Liang J, Wu D (2018c) A non-probabilistic reliability-based topology optimization (NRBTO) method of continuum structures with convex uncertainties. Struct Multidiscip Optim1–20

  • Wei P, Wang MY (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Eng 78(4):379–402

    Article  MathSciNet  MATH  Google Scholar 

  • Wu J, Luo Z, Zhang Y, Zhang N, Chen L (2013a) Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int J Numer Methods Eng 95(7):608–630

    Article  MathSciNet  MATH  Google Scholar 

  • Wu J, Zhang Y, Chen L, Luo Z (2013b) A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl Math Model 37(6):4578–4591

    Article  MathSciNet  MATH  Google Scholar 

  • Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278(7):524–542

    Article  MATH  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Yin H, Yu DJ, Xia BZ (2018) Reliability-based topology optimization for structures using fuzzy set model. Comput Methods Appl Mech Eng 333:197–217

    Article  MathSciNet  Google Scholar 

  • Zhang WS, Zhou JH, Zhu YC, Guo X (2017) Structural complexity control in topology optimization via moving morphable component (MMC) approach. Struct Multidiscip Optim 56(1):535–552

    Article  MathSciNet  Google Scholar 

  • Zhu JH, Zhang WH, Beckers P (2010) Integrated layout design of multi-component system. Int J Numer Methods Eng 78(6):631–651

    Article  MATH  Google Scholar 

  • Zhu JH, Zhang WH, Xia L (2015) Topology optimization in aircraft and aerospace structures design, Arch Comp Methods Eng 1–28

  • Zhuang CG, Xiong ZH, Ding H (2010) Topology optimization of multi-material for the heat conduction problem based on the level set method. Eng Optim 42(9):811–831

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Nature Science Foundation of China (11602012, 11432002), the Pre-research Field Foundation of Equipment Development Department of China (61402100103), the Aeronautical Science Foundation of China (2017ZA51012), and the Defense Industrial Technology Development Program (JCKY2016204B101, JCKY2017601B001) for the financial supports. Besides, the authors wish to express their many thanks to the reviewers for their useful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Responsible Editor: Byeng D Youn

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Since the temperature threshold tcri is generally set to a large value in actual engineering, the detailed derivation of the last two cases shown in Eq. (29) is given above. Moreover, the derivation methods of the remaining four cases are all the same, and it is not necessary to again describe the detailed derivation process. For the case shown in Fig.6e, let ξ1 = 1 in the limit-state function (namely Eq. (27)), yielding

$$ {\xi}_2=-\frac{t_{\mathrm{cri}}^c}{\varDelta {T}_{\mathrm{cri}}}+\frac{T_i^c+\varDelta {T}_i}{\varDelta {T}_{cri}}=-\frac{t_{\mathrm{cri}}^c}{\varDelta {T}_{\mathrm{cri}}}+\frac{\overline{T_i}\left(\mathbf{x}\right)}{\varDelta {T}_{cri}} $$
(42)

Since −1 < ξ2 < 1, it can be obtained from Eq. (42) that

$$ -1<-\frac{t_{\mathrm{cri}}^c}{\varDelta {T}_{\mathrm{cri}}}+\frac{\overline{T_i}\left(\mathbf{x}\right)}{\varDelta {T}_{\mathrm{cri}}}<1\iff \underset{\_}{t_{cri}}<\overline{T_i}\left(\mathbf{x}\right)<\overline{t_{cri}} $$
(43)

Then, letting ξ2 =  − 1 yields

$$ {\xi}_1=-\frac{T_i^c}{\varDelta {T}_i}+\frac{t_{\mathrm{cri}}^c-\varDelta {T}_{cri}}{\varDelta {T}_i}=-\frac{T_i^c}{\varDelta {T}_i}+\frac{\underset{\_}{t_{cri}}}{\varDelta {T}_i} $$
(44)

Since −1 < ξ1 < 1, it can be obtained from Eq. (44) that

$$ -1<-\frac{T_i^c}{\varDelta {T}_i}+\frac{\underset{\_}{t_{cri}}}{\varDelta {T}_i}<1\iff \underset{\_}{T_i}\left(\mathbf{x}\right)<\underset{\_}{t_{cri}}<\overline{T_i}\left(\mathbf{x}\right) $$
(45)

From Eqs. (43) and (44), the fifth mathematical programming condition in the piecewise function Eq. (29) can be obtained, namely, with interference and \( \underset{\_}{T_i}\left(\mathbf{x}\right)<\underset{\_}{t_{cri}}<\overline{T_i}\left(\mathbf{x}\right)<\overline{t_{cri}} \). For this case, according to the definition of Ri, s in Eq. (28), namely

$$ {R}_{i,s}=1-\frac{S_{shade}}{S_{total}} $$
(46)

Sshade and Stotal can be calculated by geometric formulas, and then Eq. (46) can be converted to

$$ {R}_{i,s}=1-\frac{\frac{1}{2}\times \left(1+{\xi}_2\right)\times \left(1-{\xi}_1\right)}{2\times 2}=1-\frac{\left(1+{\xi}_2\right)\times \left(1-{\xi}_1\right)}{8} $$
(47)

Substituting Eq. (42) and Eq. (43) into Eq. (47) yields

$$ {R}_{i,s}=1-\frac{{\left({t}_{\mathrm{cri}}^c-{t}_i^c-\varDelta {T}_{cri}-\varDelta {T}_i\right)}^2}{8\varDelta {T}_{\mathrm{cri}}\varDelta {T}_i},\mathrm{with}\ \mathrm{interference}\ \mathrm{and}\ \underset{\_}{T_i}\left(\mathbf{x}\right)<\underset{\_}{t_{cri}}<\overline{T_i}\left(\mathbf{x}\right)<\overline{t_{cri}} $$
(48)

For the case shown in Fig. 6f, let ξ1 = 1 in the limit-state function (namely Eq. (27)), which yields

$$ {\xi}_2=-\frac{t_{\mathrm{cri}}^c}{\varDelta {T}_{cri}}+\frac{T_i^c+\varDelta {T}_i}{\varDelta {T}_{cri}}=-\frac{t_{\mathrm{cri}}^c}{\varDelta {T}_{cri}}+\frac{\overline{T_i}\left(\mathbf{x}\right)}{\varDelta {T}_{cri}} $$
(49)

Since ξ2 ≤  − 1, it can be obtained from Eq. (48) that

$$ \overline{T_i}\left(\mathbf{x}\right)\le \left(\frac{t_{\mathrm{cri}}^c}{\varDelta {T}_{cri}}-1\right)\times \varDelta {T}_{cri}={t}_{\mathrm{cri}}^c-\varDelta {T}_{cri}=\underset{\_}{t_{\mathrm{cri}}} $$
(50)

Then, letting ξ2 =  − 1 yields

$$ {\xi}_1=-\frac{T_i^c}{\varDelta {T}_i}+\frac{t_{\mathrm{cri}}^c-\varDelta {T}_{\mathrm{cri}}}{\varDelta {T}_i}=-\frac{T_i^c}{\varDelta {T}_i}+\frac{\underset{\_}{t_{\mathrm{cri}}}}{\varDelta {T}_i} $$
(51)

Since ξ1 ≥ 1, it can be obtained from Eq. (50) that

$$ \underset{\_}{t_{cri}}\ge \left(\frac{T_i^c}{\varDelta {T}_i}+1\right)\times \varDelta T=\frac{\overline{T_i}\left(\mathbf{x}\right)}{\varDelta {T}_i}\times \varDelta {T}_i=\overline{T_i}\left(\mathbf{x}\right) $$
(52)

From Eqs. (49) and (51), the sixth mathematical programming condition in the piecewise function Eq. (29) can be obtained, namely, non-interference and \( \overline{T_i}\left(\mathbf{x}\right)\le \underset{\_}{t_{cri}} \). For this case, according to the definition of Ri, s in Eq. (28), namely

$$ {R}_{i,s}=1+{D}_{safe} $$
(53)

According to the formula of the distance from the point (namely, (1, −1)) to the line (namely \( {\widehat{G}}_i\left(\boldsymbol{\upxi} \right)={t}_{cri}^c-{T}_i^c+\varDelta {T}_{cri}{\xi}_2-\varDelta {T}_i{\xi}_1=0 \)) in the Cartesian coordinate system, the following expression of Ri, s can be obtained

$$ {R}_{i,s}=1+\frac{t_{\mathrm{cri}}^c-{t}_i^c-\varDelta {T}_{cri}-\varDelta {T}_i}{\sqrt{{\left(\varDelta {T}_{\mathrm{cri}}\right)}^2+{\left(\varDelta {T}_i\right)}^2}},\kern1em \mathrm{non}-\mathrm{interference}\ \mathrm{and}\ \overline{T_i}\left(\mathbf{x}\right)\le \underset{\_}{t_{cri}} $$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liang, J., Zhang, Z. et al. Nonprobabilistic reliability oriented topological optimization for multi-material heat-transfer structures with interval uncertainties. Struct Multidisc Optim 59, 1599–1620 (2019). https://doi.org/10.1007/s00158-018-2146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-2146-5

Keywords