Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Connectivity of Boolean Satisfiability: Dichotomies for Formulas and Circuits

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. In 2006, Gopalan et al. studied connectivity properties of the solution graph and related complexity issues for CSPs. They proved dichotomies for the diameter of connected components and for the complexity of the st-connectivity question, and conjectured a trichotomy for the connectivity question. Recently, we were able to establish the trichotomy. Here, we consider connectivity issues of satisfiability problems defined by Boolean circuits and propositional formulas that use gates, resp. connectives, from a fixed set of Boolean functions. We obtain dichotomies for the diameter and the two connectivity problems: on one side, the diameter is linear in the number of variables, and both problems are in P, while on the other side, the diameter can be exponential, and the problems are PSPACE-complete. For partially quantified formulas, we show an analogous dichotomy. A motivation is the relevance to reconfiguration problems and satisfiability algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Achlioptas, D., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction problems. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp 130–139. ACM (2006)

  2. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with boolean blocks, part i: Posts lattice with applications to complexity theory. In: SIGACT News (2003)

  3. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: Pspace-completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–5226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bulatov, A.A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp 649–658. IEEE (2002)

  5. Cereceda, L., Van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory 67(1), 69–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Creignou, N., Kolaitis, P., Zanuttini, B.: Structure identification of boolean relations and plain bases for co-clones. J. Comput. Syst. Sci. 74(7), 1103–1115 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ekin, O., Hammer, P.L., Kogan, A.: On connected boolean functions. Discr. Appl. Math. 96, 337–362 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fu, Z., Malik, S.: Extracting logic circuit structure from conjunctive normal form descriptions. In: 20th International Conference on VLSI Design, 2007. Held Jointly with 6th International Conference on Embedded Systems, pp 37–42. IEEE (2007)

  10. Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of boolean satisfiability: Computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009). doi:10.1137/07070440X

    Article  MathSciNet  MATH  Google Scholar 

  11. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of boolean satisfiability: Computational and structural dichotomies. ICALP’06, 346–357 (2006). doi:10.1007/11786986_31

  12. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011). doi:10.1016/j.tcs.2010.12.005

    Article  MathSciNet  MATH  Google Scholar 

  13. Kamiński, M., Medvedev, P., Milaniċ, M.: Shortest paths between shortest paths and independent sets. In: Combinatorial Algorithms, pp. 56–67. Springer (2011)

  14. Lewis, H.R.: Satisfiability problems for propositional calculi. Mathematical Systems Theory 13(1), 45–53 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Makino, K., Tamaki, S., Yamamoto, M.: On the boolean connectivity problem for horn relations. In: Proceedings of the 10th International Conference on Theory and Applications of Satisfiability Testing, SAT’07, pp. 187–200 (2007)

  16. Maneva, E., Mossel, E., Wainwright, M.J.: A new look at survey propagation and its generalizations. J. ACM (JACM) 54(4), 17 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mézard, M., Mora, T., Zecchina, R.: Clustering of solutions in the random satisfiability problem. Phys. Rev. Lett. 94(19), 197,205 (2005)

    Article  Google Scholar 

  18. Michael, T.: On the applicability of post’s lattice. Inf. Process. Lett. 112(10), 386–391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution space of Boolean formulas. arXiv:1404.3801 (2014)

  20. Post, E.L.: The Two-Valued Iterative Systems of Mathematical Logic.(AM-5), vol. 5. Princeton University Press (1941)

  21. Reith, S., Wagner, K.W.: The complexity of problems defined by Boolean circuits (2000)

  22. Schaefer, T.J.: The complexity of satisfiability problems. STOC ’78, 216–226 (1978). doi:10.1145/800133.804350

  23. Schnoor, H.: Algebraic techniques for satisfiability problems. Ph.D. thesis, Universität Hannover (2007)

  24. Schwerdtfeger, K.W.: A computational trichotomy for connectivity of boolean satisfiability. Journal on Satisfiability, Boolean Modeling and Computation 8, 173–195 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Schwerdtfeger, K.W.: The connectivity of boolean satisfiability: No-constants and quantified variants. arXiv:1403.6165 (2014)

  26. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, New York (1999)

    Book  MATH  Google Scholar 

  27. Wu, C.A., Lin, T.H., Lee, C.C., Huang, C.Y.R.: Qutesat: A robust circuit-based sat solver for complex circuit structure. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1313–1318. EDA Consortium (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad W. Schwerdtfeger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwerdtfeger, K.W. The Connectivity of Boolean Satisfiability: Dichotomies for Formulas and Circuits. Theory Comput Syst 61, 263–282 (2017). https://doi.org/10.1007/s00224-015-9663-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-015-9663-z

Keywords