Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Microstructure evolution and tribological properties of acrylonitrile–butadiene rubber surface modified by atmospheric plasma treatment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile–butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

References

  1. M. Razavizadeh, M. Jamshidi, Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: interfacial characterization of MDI grafted PET. Appl. Surf. Sci. 379, 114–123 (2016)

    Article  ADS  Google Scholar 

  2. A. Choudhury, A.K. Bhowmick, M. Soddemann, Effect of organo-modified clay on accelerated aging resistance of hydrogenated nitrile rubber nanocomposites and their life time prediction. Polym. Degrad. Stabil. 95, 2555–2562 (2010)

    Article  Google Scholar 

  3. Z. Zhu, Y. Xia, G. Niu, J. Liu, C. Wang, H. Jiang, Effect of direct fluorination on the mechanical and scratch performance of nitrile butadiene rubber. Wear 376–377, 1314–1320 (2017)

    Article  Google Scholar 

  4. S. Thirumalai, A. Hausberger, J.M. Lackner, W. Waldhauser, T. Schwarz, Effect of the type of elastomeric substrate on the microstructural, surface and tribological characteristics of diamond-like carbon (DLC) coatings. Surf. Coat. Technol. 302, 244–254 (2016)

    Article  Google Scholar 

  5. C. Yuan, Z. Guo, W. Tao, C. Dong, X. Bai, Effects of different grain sized sands on wear behaviours of NBR/casting copper alloys. Wear 384–385, 185–191 (2017)

    Article  Google Scholar 

  6. Y. Guo, Z. Cao, D. Wang, S. Liu, Improving the friction and abrasion properties of nitrile rubber hybrid with hollow glass beads. Tribol. Int. 101, 122–130 (2016)

    Article  Google Scholar 

  7. Y.R. Liang, H.X. Yang, Y.J. Tan, T. Zhang, L.Y. Wang, G. Hu, Mechanical and tribological properties of nitrile rubber filled with modified molybdenum disulphide. Plast. Rubber Compos. 45, 247–252 (2016)

    Article  Google Scholar 

  8. C.L. Dong, C.Q. Yuan, X.Q. Bai, Y. Yang, X.P. Yan, Study on wear behaviours for NBR/stainless steel under sand water-lubricated conditions. Wear 332–333, 1012–1020 (2015)

    Article  Google Scholar 

  9. C. Dong, C. Yuan, L. Wang, W. Liu, X. Bai, X. Yan, Tribological properties of water-lubricated rubber materials after modification by MoS2 nanoparticles. Sci. Rep. 6, 35023 (2016)

    Article  ADS  Google Scholar 

  10. D.S. Syromotina, R.A. Surmenev, M.A. Surmeneva, A.N. Boyandin, E.D. Nikolaeva, O. Prymak, M. Epple, M. Ulbricht, C. Oehr, T.G. Volova, Surface wettability and energy effects on the biological performance of poly-3-hydroxybutyrate films treated with RF plasma. Mater. Sci. Eng. C Mater. Biol. Appl. 62, 450–457 (2016)

    Article  Google Scholar 

  11. C. Li, Y. Liao, Adhesive stretchable printed conductive thin film patterns on PDMS surface with an atmospheric plasma treatment. ACS Appl. Mater. Interfaces 8, 11868–11874 (2016)

    Article  Google Scholar 

  12. L. Watkins, A.F. Lee, J.W. Moir, K. Wilson, Plasma generated poly(allyl alcohol) antifouling coatings for cellular attachment. ACS Biomater. Sci. Eng. 3(1), 88–94 (2017)

    Article  Google Scholar 

  13. F. Khelifa, S. Ershov, Y. Habibi, R. Snyders, P. Dubois, Free-radical-induced grafting from plasma polymer surfaces. Chem. Rev. 116, 3975–4005 (2016)

    Article  Google Scholar 

  14. S.C. Lin, C.J. Yeh, D. Manoharan, K.C. Leou, I.N. Lin, Microstructural evolution of nanocrystalline diamond films due to CH4/Ar/H2 plasma post-treatment process. ACS Appl. Mater. Interfaces. 7, 21844–21851 (2015)

    Article  Google Scholar 

  15. M. Tosun, L. Chan, M. Amani, T. Roy, G.H. Ahn, P. Taheri, C. Carraro, J.W. Ager, R. Maboudian, A. Javey, Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 10, 6853–6860 (2016)

    Article  Google Scholar 

  16. K. Bobzin, T. Brögelmann, K. Stahl, J.P. Stemplinger, J. Mayer, M. Hinterstoißer, Influence of wetting and thermophysical properties of diamond-like carbon coatings on the frictional behavior in automobile gearboxes under elasto-hydrodynamic lubrication. Surf. Coat. Technol. 284, 290–301 (2015)

    Article  Google Scholar 

  17. D. Feng, M. Shen, X. Peng, X. Meng, Surface roughness effect on the friction and wear behaviour of acrylonitrile-butadiene rubber (NBR) under oil lubrication. Tribol. Lett. 65, 1–14 (2016)

    Google Scholar 

  18. M. Guo, D. Diao, L. Yang, X. Fan, Restructured graphene sheets embedded carbon film by oxygen plasma etching and its tribological properties. Appl. Surf. Sci. 357, 771–776 (2015)

    Article  ADS  Google Scholar 

  19. J. Zheng, J. Hao, X. Liu, Q. Gong, W. Liu, TiN/TiCN multilayer films modified by argon plasma treatment. Appl. Surf. Sci. 280, 764–771 (2013)

    Article  ADS  Google Scholar 

  20. D.J. Wolthuizen, D. Martinez-Martinez, Y.T. Pei, J.T.M. De Hosson, Influence of plasma treatments on the frictional performance of rubbers. Tribol. Lett. 47, 303–311 (2012)

    Article  Google Scholar 

  21. B.D. Beake, J.S.G. Ling, G.J. Leggett, Correlation of friction, adhesion, wettability and surface chemistry after argon plasma treatment of poly(ethylene terephthalate). J. Mater. Chem. 8, 2845–2854 (1998)

    Article  Google Scholar 

  22. H. Liu, D. Xie, L. Qian, X. Deng, Y.X. Leng, N. Huang, The mechanical properties of the ultrahigh molecular weight polyethylene (UHMWPE) modified by oxygen plasma. Surf. Coat. Technol. 205, 2697–2701 (2011)

    Article  Google Scholar 

  23. N. Yaman, E. Özdoğan, N. Seventekin, Evaluation of some of the physical properties of atmospheric plasma treated polypropylene fabric. J. Text. Inst. 101, 746–752 (2010)

    Article  Google Scholar 

  24. N. Roche, P. Heuillet, C. Janin, P. Jacquot, Mechanical and tribological behavior of HNBR modified by ion implantation, influence of aging. Surf. Coat. Technol. 209, 58–63 (2012)

    Article  Google Scholar 

  25. T. Iwai, Y. Uchiyama, K. Shimosaka, K. Takase, Study on the formation of periodic ridges on the rubber surface by friction and wear monitoring. Wear 259, 669–675 (2005)

    Article  Google Scholar 

  26. E. Fortunati, S. Mattioli, L. Visai, M. Imbriani, J.L.G. Fierro, J.M. Kenny, I. Armentano, Combined effects of ag nanoparticles and oxygen plasma treatment on PLGA morphological, chemical, and antibacterial properties. Biomacromolecules 14(3), 626–636 (2013)

    Article  Google Scholar 

  27. Y. Wan, D. Xiong, The effect of laser surface texturing on frictional performance of face seal. J Mater. Process. Technol. 197, 96–100 (2008)

    Article  Google Scholar 

  28. J. Lin, H. Chang, Surface modification of SUS304 stainless steel by atmospheric pressure Ar/N2/O2 plasma. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269, 1801–1808 (2011)

    Article  ADS  Google Scholar 

  29. G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, E. Gogolides, Dual nanoscale roughness on plasma-etched Si surfaces: role of etch inhibitors. Phys. Rev. B 76, 193405 (2007)

    Article  ADS  Google Scholar 

  30. F. Katzenberg, Irradiation- and strain-induced self-organization of elastomer surfaces. Macromol. Mater. Eng. 286, 26–29 (2001)

    Article  Google Scholar 

  31. N. Nakazaki, H. Tsuda, Y. Takao, K. Eriguchi, K. Ono, Two modes of surface roughening during plasma etching of silicon: role of ionized etch products. J. Appl. Phys. 116, 223302 (2014)

    Article  ADS  Google Scholar 

  32. J. Yang, H. Chen, S. Xiao, M. Shen, F. Chen, P. Fan, M. Zhong, J. Zheng, Salt-responsive zwitterionic polymer brushes with tunable friction and antifouling properties. Langmuir 31, 9125–9133 (2015)

    Article  Google Scholar 

  33. J. Zhang, Y. Meng, Boundary lubrication by adsorption film. Friction 3, 115–147 (2015)

    Article  Google Scholar 

  34. W.R.D. Wilson, W.P. Delmolino, The influence of surface roughness on the lubrication breakdown in upsetting between overhanging dies. Wear 1(29), 1–10 (1974)

    Article  Google Scholar 

  35. J. Horng, M. Len, J. Lee, The contact characteristics of rough surfaces in line contact during running-in process. Wear 253(9–10), 899–913 (2002)

    Article  Google Scholar 

  36. Y. Jeong, C. Pearson, H.G. Kim, M.Y. Park, H. Kim, L.M. Do, M.C. Petty, Optimization of a solution-processed SiO2 gate insulator by plasma treatment for zinc oxide thin film transistors. ACS Appl. Mater. Interfaces. 8, 2061–2070 (2016)

    Article  Google Scholar 

  37. V. Prysiazhnyi, V. Zaporojchenko, H. Kersten, M. Černák, Influence of humidity on atmospheric pressure air plasma treatment of aluminium surfaces. Appl. Surf. Sci. 258, 5467–5471 (2012)

    Article  ADS  Google Scholar 

  38. L. Bónová, A. Zahoranová, D. Kováčik, M. Zahoran, M. Mičušík, M. Černák, Atmospheric pressure plasma treatment of flat aluminum surface. Appl. Surf. Sci. 331, 79–86 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (no. 51775503), the Natural Science Foundation of Zhejiang Province (no. LY17E050020), the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province (no. 2016CL05) and the Cultivating Talents Project of Zhejiang Association for Science and Technology (no. 2016YCGC017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-xue Shen or Xu-dong Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Mx., Zhang, Zx., Peng, Xd. et al. Microstructure evolution and tribological properties of acrylonitrile–butadiene rubber surface modified by atmospheric plasma treatment. Appl. Phys. A 123, 601 (2017). https://doi.org/10.1007/s00339-017-1214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1214-9