Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

High-speed particle image velocimetry for the efficient measurement of turbulence statistics

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A high-frame-rate camera and a continuous-wave laser are used to capture long particle image sequences exceeding 100,000 consecutive frames at framing frequencies up to 20 kHz. The electronic shutter of the high-speed CMOS camera is reduced to \(10\,\upmu\)s to prevent excessive particle image streaking. The combination of large image number and high frame rate is possible by limiting the field of view to a narrow strip, primarily to capture temporally resolved profiles of velocity and derived quantities, such as vorticity as well as higher order statistics. Multi-frame PIV processing algorithms are employed to improve the dynamic range of recovered PIV data. The recovered data are temporally well resolved and provide sufficient samples for statistical convergence of the fluctuating velocity components. The measurement technique is demonstrated on a spatially developing turbulent boundary layer inside a small wind tunnel with \(Re_\delta = 4{,}800,\, Re_\tau = 240\) and \(Re_\theta = 515\). The chosen magnification permits a reliable estimation of the mean velocity profile down to a few wall units and yields statistical information such as the Reynolds stress components and probability density functions. By means of single-line correlation, it is further possible to extract the near-wall velocity profile in the viscous sublayer, both time-averaged as well as instantaneous, which permits the estimation the wall shear rate \(\dot{\gamma }\) and along with it the shear stress \(\tau _w\) and friction velocity \(u_\tau\). These data are then used for the calculation of space-time correlation maps of wall shear stress and velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Displacements larger than \(\frac{1}{2}\)IW are recoverable with advanced PIV processing methods but impose other restrictions.

Abbreviations

\(c_\mathrm{f}\) :

Friction coefficient

\(f\) :

Focal length

\(f_\#\) :

f-Number (lens aperture)

IW:

Interrogation window size

\(M\) :

Magnification

\(N\) :

Number of samples

\(R_{ij}\) :

Space-time correlation function of scalar quantities \(i,j\)

\(Re_\delta\) :

Reynolds number based on \(U_{\mathrm {99}}\) and \(\delta _{99}\)

\(Re_{\delta ^*}\) :

Reynolds number based on \(U_{\mathrm {99}}\) and \(\delta ^*\)

\(Re_\theta\) :

Reynolds number based on \(U_{\mathrm {99}}\) and \(\theta\)

\(Re_\tau\) :

Reynolds number based on \(u_\tau\) and \(\delta _{99}\)

\(S\) :

Shape factor, \(\delta ^*/\theta\)

\(t\) :

Time

\(u,v,w\) :

Streamwise, wall-normal and spanwise velocity components

\(u',v',w'\) :

Fluctuating velocity components

\(u_\tau\) :

Skin friction velocity

\(U_{cl}\) :

Center line velocity

\(U_{99}\) :

\(0.99\, U_{\mathrm {cl}}\)

\(x,y,z\) :

Streamwise, wall-normal and spanwise coordinates

\(x^+, y^+, z^+\) :

Distances in wall units based on \(u_\tau\)

\(\delta _{99}\) :

Boundary layer thickness at 99% \(U_{{\mathrm {cl}}}\)

\(\delta ^*\) :

Boundary layer displacement thickness

\(\Delta t\) :

Time delay between two illumination pulses

\(\Delta x, \Delta y\) :

Streamwise and wall-normal displacement in pixels

\(\lambda\) :

Wavelength of light

\(\nu\) :

Kinematic viscosity

\(\theta\) :

Boundary layer momentum thickness

\(\dot{\gamma }\) :

Wall shear rate \(\equiv {\partial u / \partial y}_{y=0}\)

\(\tau _w\) :

Wall shear stress

\(\omega _x,\omega _y,\omega _z\) :

Streamwise, wall-normal and spanwise vorticity components

References

  • Adrian R (2005) Twenty years of particle image velocimetry. Exp Fluids 39(2):159–169. doi:10.1007/s00348-005-0991-7

    Article  Google Scholar 

  • Adrian R, Westerweel J (2010) Particle image velocimetry. Cambridge Aerospace Series. Cambridge University Press, New York. ISBN 978-0521440080

    Google Scholar 

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23(1):261–304. doi:10.1146/annurev.fl.23.010191.001401

    Article  Google Scholar 

  • Adrian RJ (1997) Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas Sci Technol 8(12):1393

    Article  Google Scholar 

  • Alfredsson PH, Johansson AV, Haritonidis JH, Eckelmann H (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys Fluids (1958–1988) 31(5):1026–1033. doi:10.1063/1.866783

    Article  Google Scholar 

  • Alfredsson PH, Örlü R (2010) The diagnostic plot a litmus test for wall bounded turbulence data. Eur J Mech B Fluids 29(6):403–406. doi:10.1016/j.euromechflu.2010.07.006

    Article  MATH  Google Scholar 

  • Amili O, Soria J (2011) A film-based wall shear stress sensor for wall-bounded turbulent flows. Exp Fluids 51(1):137–147. doi:10.1007/s00348-010-1035-5

    Article  Google Scholar 

  • Ayaz UK, Ioppolo T, Ötügen MV (2011) Wall shear stress sensor based on the optical resonances of dielectric microspheres. Meas Sci Technol 22(7):075,203. doi:10.1088/0957-0233/22/7/075203

    Article  Google Scholar 

  • Brücker C, Spatz J, Schröder W (2005) Feasability study of wall shear stress imaging using microstructured surfaces with flexible micropillars. Exp Fluids 39(2):464–474. doi:10.1007/s00348-005-1003-7

    Article  Google Scholar 

  • Clauser FH (1954) Turbulent boundary layers in adverse pressure gradients. J Aeronaut Sci 21(2):91–108. doi:10.2514/8.2938

    Article  Google Scholar 

  • Colella K, Keith W (2003) Measurements and scaling of wall shear stress fluctuations. Exp Fluids 34(2):253–260. doi:10.1007/s00348-002-0552-2

    Article  Google Scholar 

  • Czarske J, Büttner L, Razik T, Müller H (2002) Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution. Meas Sci Technol 13(12):1979. doi:10.1088/0957-0233/13/12/324

    Article  Google Scholar 

  • de Graaff DB, Eaton JK (2000) Reynolds-number scaling of the flat-plate turbulent boundary layer. J Fluid Mech 422:319–346. doi:10.1017/S0022112000001713

    Article  Google Scholar 

  • de Silva CM, Gnanamanickam EP, Atkinson C, Buchmann NA, Hutchins N, Soria J, Marusic I (2014) High spatial range velocity measurements in a high reynolds number turbulent boundary layer. Phys Fluids (1994–present) 26(2):025117. doi:10.1063/1.4866458

    Article  Google Scholar 

  • Dennis DJC, Nickels TB (2011) Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J Fluid Mech 673:180–217. doi:10.1017/S0022112010006324

    Article  MATH  Google Scholar 

  • Elsinga G, Scarano F, Wieneke B, Oudheusden B (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947. doi:10.1007/s00348-006-0212-z

    Article  Google Scholar 

  • Elsinga GE, Marusic I (2010) Evolution and lifetimes of flow topology in a turbulent boundary layer. Phys Fluids (1994–present) 22(1):015102. doi:10.1063/1.3291070

    Article  Google Scholar 

  • Fernholz HH, Janke G, Schober M, Wagner PM, Warnack D (1996) New developments and applications of skin-friction measuring techniques. Meas Sci Technol 7(10):1396

    Article  Google Scholar 

  • Gao Q, Ortiz-Dueas C, Longmire EK (2013) Evolution of coherent structures in turbulent boundary layers based on moving tomographic PIV. Exp Fluids 54(12):1625. doi:10.1007/s00348-013-1625-0

    Article  Google Scholar 

  • Gnanamanickam EP, Nottebrock B, Große S, Sullivan J, Schröder W (2013) Measurement of turbulent wall shear-stress using micro-pillars. Meas Sci Technol 24:124,002. doi:10.1088/0957-0233/24/12/124002

    Article  Google Scholar 

  • Hain R, Kähler C (2007) Fundamentals of multiframe particle image velocimetry (PIV). Exp Fluids 42(4):575–587. doi:10.1007/s00348-007-0266-6

    Article  Google Scholar 

  • Herpin S, Wong C, Stanislas M, Soria J (2008) Stereoscopic PIV measurements of a turbulent boundary layer with a large spatial dynamic range. Exp Fluids 45(4):745–763. doi:10.1007/s00348-008-0533-1

    Article  Google Scholar 

  • Hu Z, Morfey CL, Sandham ND (2006) Wall pressure and shear stress spectra from direct simulations of channel flow. AIAA J 44(7):1541–1549

    Article  Google Scholar 

  • Hutchins N, Nickels TB, Marusic I, Chong MS (2009) Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech 635:103–136. doi:10.1017/S0022112009007721

    Article  MATH  Google Scholar 

  • Jiang F, Tai YC, Gupta B, Goodman R, Tung S, Huang JB, Ho CM (1996) A surface-micromachined shear stress imager. In: Proceedings of micro electro mechanical systems, 1996, MEMS ’96. An investigation of micro structures, sensors, actuators, machines and systems. IEEE, The ninth annual international workshop, pp 110–115 . doi:10.1109/MEMSYS.1996.493838

  • Kähler C, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41(2):327–341. doi:10.1007/s00348-006-0167-0

    Article  Google Scholar 

  • Kähler CJ, Scharnowski S, Cierpka C (2012) On the resolution limit of digital particle image velocimetry. Exp Fluids 52(6):1629–1639. doi:10.1007/s00348-012-1280-x

    Article  Google Scholar 

  • Keirsbulck L, Labraga L, el Hak MG (2012) Statistical properties of wall shear stress fluctuations in turbulent channel flows. Int J Heat Fluid Flow 37:1–8. doi:10.1016/j.ijheatfluidflow.2012.04.004

    Article  Google Scholar 

  • LeHew J, Guala M, McKeon B (2013) Time-resolved measurements of coherent structures in the turbulent boundary layer. Exp Fluids 54(4):1508. doi:10.1007/s00348-013-1508-4

    Article  Google Scholar 

  • Löfdahl L, Chernoray V, Haasl S, Stemme G, Sen M (2003) Characteristics of a hot-wire microsensor for time-dependent wall shear stress measurements. Exp Fluids 35(3):240–251. doi:10.1007/s00348-003-0624-y

    Article  Google Scholar 

  • Mathis R, Marusic I, Chernyshenko SI, Hutchins N (2013) Estimating wall-shear-stress fluctuations given an outer region input. J Fluid Mech 715:163–180. doi:10.1017/jfm.2012.508

    Article  MATH  MathSciNet  Google Scholar 

  • Miyagi N, Kimura M, Shoji H, Saima A, Ho CM, Tung S, Tai YC (2000) Statistical analysis on wall shear stress of turbulent boundary layer in a channel flow using micro-shear stress imager. Int J Heat Fluid Flow 21:576–581

    Article  Google Scholar 

  • Naqwi A, Reynolds W (1987) Dual cylindrical wave laser Doppler method for measurement of skin friction in fluid flow. Technical report, Report No. TF-28, Stanford University

  • Nguyen TD, Wells JC, Nguyen CV (2010) Wall shear stress measurement of near-wall flow over inclined and curved boundaries by stereo interfacial particle image velocimetry. Int J Heat Fluid Flow 31(3):442–449. doi:10.1016/j.ijheatfluidflow.2009.12.002 (Sixth International Symposium on Turbulence and Shear Flow Phenomena)

    Article  Google Scholar 

  • Obi S, Inoue K, Furukawa T, Masuda S (1996) Experimental study on the statistica of wall shear stress in turbulent channel flows. Int J Heat Fluid Flow 17:187–192

    Article  Google Scholar 

  • Örlü R, Schlatter P (2011) On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows. Phys Fluids (1994–present) 23(2):021704. doi:10.1063/1.3555191

    Article  Google Scholar 

  • Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116

    Article  Google Scholar 

  • Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry: a practical guide. Experimental Fluid Mechanics. Springer, Berlin

    Google Scholar 

  • Ruedi J, Nagib H, Österlund J, Monkewitz P (2003) Evaluation of three techniques for wall-shear measurements in three-dimensional flows. Exp Fluids 35(5):389–396. doi:10.1007/s00348-003-0650-9

    Article  Google Scholar 

  • Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci Technol 24(1):012,001

    Article  Google Scholar 

  • Schlatter P, Örlü R (2010) Assessment of direct numerical simulation data of turbulent boundary layers. J Fluid Mech 659:116–126. doi:10.1017/S0022112010003113

    Article  MATH  Google Scholar 

  • Schlatter P, Örlü R, Li Q, Brethouwer G, Fransson JHM, Johansson AV, Alfredsson PH, Henningson DS (2009) Turbulent boundary layers up to \(Re_\theta =2500\) studied through simulation and experiment. Phys Fluids 21(5):051702. doi:10.1063/1.3139294

    Article  Google Scholar 

  • Schröder A, Geisler R, Elsinga GE, Scarano F, Dierksheide U (2008) Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV. Exp Fluids 44(2):305–316. doi:10.1007/s00348-007-0403-2

    Article  Google Scholar 

  • Schröder A, Geisler R, Staack K, Elsinga G, Scarano F, Wieneke B, Henning A, Poelma C, Westerweel J (2011) Eulerian and lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV. Exp Fluids 50(4):1071–1091. doi:10.1007/s00348-010-1014-x

    Article  Google Scholar 

  • Sciacchitano A, Scarano F, Wieneke B (2012) Multi-frame pyramid correlation for time-resolved PIV. Exp Fluids 53(4):1087–1105. doi:10.1007/s00348-012-1345-x

    Article  Google Scholar 

  • Shirai K, Pfister T, Büttner L, Czarske J, Müller H, Becker S, Lienhart H, Durst F (2006) Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-doppler velocity-profile sensor. Exp Fluids 40(3):473–481. doi:10.1007/s00348-005-0088-3

    Article  Google Scholar 

  • Stanislas M, Perret L, Foucaut JM (2008) Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J Fluid Mech 602:327–382. doi:10.1017/S0022112008000803

    Article  MATH  Google Scholar 

  • Vincenti P, Klewicki J, Morrill-Winter C, White C, Wosnik M (2013) Streamwise velocity statistics in turbulent boundary layers that spatially develop to high reynolds number. Exp Fluids 54(12):1629. doi:10.1007/s00348-013-1629-9

    Article  Google Scholar 

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39(6):1096–1100. doi:10.1007/s00348-005-0016-6

    Article  Google Scholar 

  • Willert C (1997) Stereoscopic digital particle image velocimetry for application in wind-tunnel flows. Meas Sci Technol 8:1465–1479

    Article  Google Scholar 

  • Willert C, Stasicki B, Klinner J, Moessner S (2010) Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas Sci Technol 21(7):075402. doi:10.1088/0957-0233/21/7/075402

    Article  Google Scholar 

  • Wu X, Moin P (2009) Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J Fluid Mech 630:5–41. doi:10.1017/S0022112009006624

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank his colleagues J. Klinner, M. Schroll and M. Beversdorff for their assistance in the wind tunnel setup and PIV measurements. Further acknowledgment goes to N. Buchmann for his valuable comments while preparing the manuscript. Finally, the support of PCO GmbH is gratefully acknowledged who provided the Dimax-HS4 high-speed camera for evaluation purposes. The recommendations by the anonymous reviewers significantly improved the overall quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian E. Willert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willert, C.E. High-speed particle image velocimetry for the efficient measurement of turbulence statistics. Exp Fluids 56, 17 (2015). https://doi.org/10.1007/s00348-014-1892-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1892-4

Keywords