Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Doubly Resolvable H Designs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Two resolutions of the same 3-design are said to be orthogonal when each parallel class of one resolution has at most one block in common with each parallel class of the other resolution. If an H design has two orthogonal resolutions, then the H design is called a doubly resolvable H design. In this paper, we construct two infinite classes of doubly resolvable H(ng, 4, 3)s for \(n=6\) or 8 and use a quadrupling construction to obtain more infinite classes of doubly resolvable H designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel, R.J.R., Chan, N., Colbourn, C.J., Lamken, E.R., Wang, C., Wang, J.: Doubly resolvable nearly Kirkman triple systems. J. Combin. Des. 21, 342–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abel, R.J.R., Lamken, E.R., Wang, J.: A few more Kirkman squares and doubly resolvable BIBDs with block size 3. Discret. Math. 308, 1102–1123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Booth, T.R.: A resolvable quadruple system of order \(20\). Ars Combin. 5, 121–125 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Colbourn, C.J., Lamken, E.R., Ling, A.C.H., Mills, W.H.: The existence of Kirkman squares - doubly resolvable \((v, 3, 1)\)-BIBDs. Des. Codes Cryptogr. 26, 169–196 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Greenwell, D.L., Lindner, C.C.: Some remarks on resolvable quadruple systems. Ars Combin. 6, 215–221 (1978)

    MathSciNet  MATH  Google Scholar 

  6. Hartman, A.: Resolvable Steiner quadruple systems. Ars Combin. 9, 263–273 (1980)

    MathSciNet  MATH  Google Scholar 

  7. Hartman, A.: Tripling quadruple systems. Ars Combin. 10, 255–309 (1980)

    MathSciNet  MATH  Google Scholar 

  8. Hartman, A.: Doubly and orthogonally resolvable quadruple systems. Ars Combin., Combinatorial Mathematics, VII, Proc. Seventh Australian Conf., Lecture Notes in Math., Univ. Newcastle, Newcastle, 1979, vol. 829. Springer, Berlin, 157–164 (1980)

  9. Hartman, A.: The existence of resolvable Steiner quadruple systems. J. Combin. Theory (A) 44, 182–206 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ji, L.: On the 3BD-closed set \(B_3({4, 5})\). Discret. Math. 287, 55–67 (2004)

    Article  MATH  Google Scholar 

  11. Ji, L.: An improvement on H design. J. Combin. Des. 17, 25–35 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ji, L.: Existence of Steiner quadruple systems with a spanning block design. Discret. Math. 312, 920–932 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ji, L., Zhu, L.: Resolvable Steiner quadruple systems for the last \(23\) orders. SIAM J. Discret. Math. 19, 420–432 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mills, W.H.: On the existence of H designs. Congr. Numer. 79, 129–141 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Meng, Z.: Doubly resolvable Steiner quadruple systems and related designs. Des. Codes Cryptogr. (2016). doi:10.1007/s10623-016-0269-5

  16. Mullin, R.C., Wallis, W.D.: The existence of Room squares. Aequ. Math. 1, 1–7 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stern, G., Lenz, H.: Steiner triple systems with given subspaces, another proof of the Doyen-Wilson Theorem, Bull. Un. Mal. Ital. A(5) 17 , 109–114 (1980)

  18. Vries, H.L.D.: On orthogonal resolutions of the classical Steiner quadruple system SQS(16). Des. Codes Cryptogr. 48, 287–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, X., Ge, G.: Existence of resolvable H-designs with group sizes 2, 3, 4 and 6. Des. Codes Cryptogr. 55, 81–101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, X., Ge, G.: H-designs with the properties of resolvability or \((1,2)\)-resolvability. Des. Codes Cryptogr. 57, 225–256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoping Meng.

Additional information

Supported by NSFC Grant No: U1304105, a Project of Shandong Province Higher Educational Science and Technology Program Grant No: J14LI12 and The “12th Five-Year” Educational Science Plan of Shandong Province Grant No: ZBS15006.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z. Doubly Resolvable H Designs. Graphs and Combinatorics 32, 2563–2574 (2016). https://doi.org/10.1007/s00373-016-1737-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-016-1737-4

Keywords