Abstract
We introduce and study a family of polytopes which can be seen as a generalization of the permutahedron of type \(B_d\). We highlight connections with the largest possible diameter of the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k, and with the computational complexity of multicriteria matroid optimization.
Similar content being viewed by others
References
Acketa, D.M., Žunić, J.D.: On the maximal number of edges of convex digital polygons included into an \(m\times {m}\)-grid. J. Comb. Theory Ser. A 69(2), 358–368 (1995)
Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Long and winding central paths. arXiv:1405.4161 (2014)
Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: Goodman, J.E., et al. (eds.) Proceedings of the Seventh Annual Symposium on Computational Geometry (SCG’91), pp. 162–165. ACM, New York (1991)
Berge, C.: Graphes, 3rd edn. Gauthier-Villars, Paris (1983)
Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On sub-determinants and the diameter of polyhedra. Discrete Comput. Geom. 52(1), 102–115 (2014)
Borgwardt, S., De Loera, J.A., Finhold, E.: The diameters of network-flow polytopes satisfy the Hirsch conjecture. arXiv:1603.00325 (2016)
Del Pia, A., Michini, C.: On the diameter of lattice polytopes. Discrete Comput. Geom. 55(3), 681–687 (2016)
Deza, A., Pournin, L.: Improved bounds on the diameter of lattice polytopes. arXiv:1610.00341 (2016)
Eppstein, D.: Zonohedra and zonotopes. Math. Educ. Res. 5(4), 15–21 (1996)
Fukuda, K.: Lecture: Polyhedral Computation. http://www-oldurls.inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/ (2015)
Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: complexity and applications to Gröbner bases. SIAM J. Discrete Math. 6(2), 246–269 (1993)
Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics, vol. 221, 2nd edn. Springer, New York (2003)
Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Clarendon Press, New York (1979)
Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)
Kalai, G., Kleitman, D.J.: A quasi-polynomial bound for the diameter of graphs of polyhedra. Bull. Am. Math. Soc. 26(2), 315–316 (1992)
Kleinschmidt, P., Onn, S.: On the diameter of convex polytopes. Discrete Math. 102(1), 75–77 (1992)
Melamed, M., Onn, S.: Convex integer optimization by constantly many linear counterparts. Linear Algebra Appl. 447, 88–109 (2014)
Naddef, D.: The Hirsch conjecture is true for \((0,1)\)-polytopes. Math. Program. 45(1), 109–110 (1989)
Onn, S.: Nonlinear Discrete Optimization. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2010)
Onn, S., Rothblum, U.G.: Convex combinatorial optimization. Discrete Comput. Geom. 32(4), 549–566 (2004)
Santos, F.: A counterexample to the Hirsch conjecture. Ann. Math. 176(1), 383–412 (2012)
Sloane, N. (ed.): The on-line encyclopedia of integer sequences. https://oeis.org
Soprunov, I., Soprunova, J.: Eventual quasi-linearity of the Minkowski length. Eur. J. Comb. 58, 110–117 (2016)
Sukegawa, N.: Improving bounds on the diameter of a polyhedron in high dimensions. arXiv:1604.04039 (2016)
Thiele, T.: Extremalprobleme für Punktmengen. Diplomarbeit, Freie Universität Berlin (1991)
Todd, M.J.: An improved Kalai-Kleitman bound for the diameter of a polyhedron. SIAM J. Discrete Math. 28(4), 1944–1947 (2014)
Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)
Acknowledgements
The authors thank the anonymous referees, Johanne Cohen, Nathann Cohen, Komei Fukuda, and Aladin Virmaux for valuable comments and for informing us of reference [25], Emo Welzl and Günter Ziegler for helping us access Thorsten Thiele’s Diplomarbeit, Dmitrii Pasechnik for pointing out reference [23] and the concept of Minkowski length, and Vincent Pilaud for pointing out graphical zonotopes and that \(Z_1(d,2)\) is the permutahedron of type \(B_d\). This work was partially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant program (RGPIN-2015-06163), by the Digiteo Chair C&O program, and by the Dresner Chair at the Technion.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: Günter M. Ziegler
Rights and permissions
About this article
Cite this article
Deza, A., Manoussakis, G. & Onn, S. Primitive Zonotopes. Discrete Comput Geom 60, 27–39 (2018). https://doi.org/10.1007/s00454-017-9873-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-017-9873-z