Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Primitive Zonotopes

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We introduce and study a family of polytopes which can be seen as a generalization of the permutahedron of type \(B_d\). We highlight connections with the largest possible diameter of the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k, and with the computational complexity of multicriteria matroid optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Acketa, D.M., Žunić, J.D.: On the maximal number of edges of convex digital polygons included into an \(m\times {m}\)-grid. J. Comb. Theory Ser. A 69(2), 358–368 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Long and winding central paths. arXiv:1405.4161 (2014)

  3. Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: Goodman, J.E., et al. (eds.) Proceedings of the Seventh Annual Symposium on Computational Geometry (SCG’91), pp. 162–165. ACM, New York (1991)

  4. Berge, C.: Graphes, 3rd edn. Gauthier-Villars, Paris (1983)

    MATH  Google Scholar 

  5. Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On sub-determinants and the diameter of polyhedra. Discrete Comput. Geom. 52(1), 102–115 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borgwardt, S., De Loera, J.A., Finhold, E.: The diameters of network-flow polytopes satisfy the Hirsch conjecture. arXiv:1603.00325 (2016)

  7. Del Pia, A., Michini, C.: On the diameter of lattice polytopes. Discrete Comput. Geom. 55(3), 681–687 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deza, A., Pournin, L.: Improved bounds on the diameter of lattice polytopes. arXiv:1610.00341 (2016)

  9. Eppstein, D.: Zonohedra and zonotopes. Math. Educ. Res. 5(4), 15–21 (1996)

    Google Scholar 

  10. Fukuda, K.: Lecture: Polyhedral Computation. http://www-oldurls.inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/ (2015)

  11. Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: complexity and applications to Gröbner bases. SIAM J. Discrete Math. 6(2), 246–269 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics, vol. 221, 2nd edn. Springer, New York (2003)

    Book  Google Scholar 

  13. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Clarendon Press, New York (1979)

    MATH  Google Scholar 

  14. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  15. Kalai, G., Kleitman, D.J.: A quasi-polynomial bound for the diameter of graphs of polyhedra. Bull. Am. Math. Soc. 26(2), 315–316 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kleinschmidt, P., Onn, S.: On the diameter of convex polytopes. Discrete Math. 102(1), 75–77 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Melamed, M., Onn, S.: Convex integer optimization by constantly many linear counterparts. Linear Algebra Appl. 447, 88–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Naddef, D.: The Hirsch conjecture is true for \((0,1)\)-polytopes. Math. Program. 45(1), 109–110 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Onn, S.: Nonlinear Discrete Optimization. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2010)

    Book  Google Scholar 

  20. Onn, S., Rothblum, U.G.: Convex combinatorial optimization. Discrete Comput. Geom. 32(4), 549–566 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Santos, F.: A counterexample to the Hirsch conjecture. Ann. Math. 176(1), 383–412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sloane, N. (ed.): The on-line encyclopedia of integer sequences. https://oeis.org

  23. Soprunov, I., Soprunova, J.: Eventual quasi-linearity of the Minkowski length. Eur. J. Comb. 58, 110–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sukegawa, N.: Improving bounds on the diameter of a polyhedron in high dimensions. arXiv:1604.04039 (2016)

  25. Thiele, T.: Extremalprobleme für Punktmengen. Diplomarbeit, Freie Universität Berlin (1991)

  26. Todd, M.J.: An improved Kalai-Kleitman bound for the diameter of a polyhedron. SIAM J. Discrete Math. 28(4), 1944–1947 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees, Johanne Cohen, Nathann Cohen, Komei Fukuda, and Aladin Virmaux for valuable comments and for informing us of reference [25], Emo Welzl and Günter Ziegler for helping us access Thorsten Thiele’s Diplomarbeit, Dmitrii Pasechnik for pointing out reference [23] and the concept of Minkowski length, and Vincent Pilaud for pointing out graphical zonotopes and that \(Z_1(d,2)\) is the permutahedron of type \(B_d\). This work was partially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant program (RGPIN-2015-06163), by the Digiteo Chair C&O program, and by the Dresner Chair at the Technion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Deza.

Additional information

Editor in Charge: Günter M. Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deza, A., Manoussakis, G. & Onn, S. Primitive Zonotopes. Discrete Comput Geom 60, 27–39 (2018). https://doi.org/10.1007/s00454-017-9873-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9873-z

Keywords