Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A robust adaptive control method is proposed in this paper based on recurrent fuzzy wavelet neural networks (RFWNNs) system for industrial robot manipulators (IRMs) to improve high accuracy of the tracking control. The RFWNNs consist of four layers, and second layer has the feedback connections. Wavelet basis function is used as fuzzy membership function. In general, it is not easy to adopt a model-based method to achieve this control object due to the uncertainties of the IRM, such as unknown dynamic, disturbances and parameter variations. To solve this problem, all the parameters of the RFWNNs system are tuned online by an adaptive learning algorithm, and online adaptive control laws are determined by Lyapunov stability theorem. In addition, the robust controller is designed to deal with the approximation error, optimal parameter vectors and higher-order terms in Taylor series. Therefore, with the proposed control, the desired tracking performance, stability and robustness of the closed-loop manipulators system are guaranteed. The simulations and experimental performed on a three-link IRMs are provided in comparison with fuzzy wavelet neural network and robust neural fuzzy network to demonstrate the effectiveness and robustness of the proposed RFWNNs methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mohammad V, Mohammad RS (2016) Voltage-base control of robot manipulator using adaptive fuzzy sliding mode control. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-016-0234-5

    Article  Google Scholar 

  2. Liu Y, Wang W (2007) Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inf Sci 177(18):3901–3917

    Article  MathSciNet  Google Scholar 

  3. Liu Y, Wang W, Tong S, Liu Y (2010) Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans Syst Man Cybern A Syst Humans 40(1):170–184

    Article  Google Scholar 

  4. Zhou Q, Li HY, Sh P (2015) Decentralized adaptive fuzzy tracking control for robot finger dynamics. IEEE Trans Fuzzy Syst 23(3):501–510

    Article  Google Scholar 

  5. Mohammad RS, Pooria O, Mohammad HK (2015) Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode. IET Sci Meas Technol 9(3):322–334

    Article  Google Scholar 

  6. Hwang JP, Kim E (2006) Robust tracking control of an electrically driven robot: adaptive fuzzy logic approach. IEEE Trans Fuzzy Syst 14(2):232–247

    Article  Google Scholar 

  7. Chiu C, Lian K (2008) Hybrid fuzzy model-based control of nonholonomic systems: a unified viewpoint. IEEE Trans Fuzzy Syst 16(1):85–96

    Article  Google Scholar 

  8. Wai RJ, Yao JX, Lee JD (2015) Backstepping fuzzy-neural-network control design for hybrid Maglev transportation system. IEEE Trans Neural Network Learn Syst 26(2):302–317

    Article  MathSciNet  Google Scholar 

  9. Gao Y, Er MJ (2003) Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems. IEEE Trans Fuzzy Syst 11(4):462–477

    Article  Google Scholar 

  10. Lee CH, Wang WC (2016) Robust adaptive position and force controller design of robot manipulator using fuzzy neural networks. Nonlinear Dyn 86(1):343–354

    Article  MathSciNet  Google Scholar 

  11. Er MJ, Gao Y (2003) Robust adaptive control of robot manipulators using generalized fuzzy neural networks. IEEE Trans Ind Electron 50(3):620–628

    Article  Google Scholar 

  12. Hu H, Woo PY (2006) Fuzzy supervisory sliding—mode and neural network control for robotic manipulators. IEEE Trans Ind Electron 53(3):929–940

    Article  Google Scholar 

  13. Gao Y, Er MJ, Yang S (2001) Adaptive fuzzy neural control of robot manipulators. IEEE Trans Ind Electron 48:1274–1278

    Article  Google Scholar 

  14. Wai RJ, Chen PC (2006) Robust neural fuzzy networks for robust adaptive control of robot manipulator including actuator dynamics. IEEE Trans Ind Electron 53(4):1328–1349

    Article  Google Scholar 

  15. Mohamed B, Abdelkrim B, Mohammed C (2017) Robust adaptive neural network-based trajectory tracking control approach for nonholonomic electrically driven mobile robots. Robot Auton Syst 92:30–40

    Article  Google Scholar 

  16. Wai RJ, Huang YC, Yang YC, Shih CY (2010) Adaptive fuzzy-neural-network velocity sensorless control for robot manipulator position tracking. IET Control Theory Appl 4(6):1079–1093

    Article  Google Scholar 

  17. Wai RJ, Muthusamy R (2013) Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics. IEEE Trans Neural Netw Learn Syst 24(2):274–287

    Article  Google Scholar 

  18. Chen CS (2008) Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Trans Ind Electron 55(9):3402–3414

    Article  Google Scholar 

  19. Chun FH, Chun WC (2016) Intelligent dynamic sliding-mode neural control using recurrent perturbation fuzzy neural networks. Neurocomputing 173(3):734–743

    Google Scholar 

  20. Wai RJ, Lin YW (2013) Adaptive moving-target tracking control of a vision-based mobile robot via a dynamic petri recurrent fuzzy neural network. IEEE Trans Fuzzy Syst 21(4):688–701

    Article  Google Scholar 

  21. Wai RJ, Liu CM (2009) Design of dynamic petri recurrent fuzzy neural network and its application to path-tracking control of nonholonomic mobile robot. IEEE Trans Ind Electron 56(7):2667–2683

    Article  Google Scholar 

  22. Han SI, Lee JM (2014) Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems. ISA Trans 53(1):33–43

    Article  Google Scholar 

  23. Lee CH, Teng CC (2000) Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans Fuzzy Syst 8(4):349–366

    Article  Google Scholar 

  24. Hsu CF, Cheng KH (2008) Recurrent fuzzy—neural approach for nonlinear control using dynamic structure learning scheme. Neuro Comput 71(16):3447–3459

    Google Scholar 

  25. Hsu CF, Lin CM, Lee TT (2006) Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans Neural Netw 17(5):1175–1183

    Article  Google Scholar 

  26. Karimi HR, Moshiri B, Lohmann B, Maralani PJ (2005) Haar wavelet-based approach for optimal control of second-order linear system in time domain. J Dyn Control Syst 11(2):237–252

    Article  MathSciNet  Google Scholar 

  27. Karimi HR, Robbersmyr KG (2011) Signal analysis and performance evaluation of a vehicle crash test with a fixed safety barrier based on Haar wavelets. Int J Wavelets Multiresolut Inf Process 90(1):131–149

    Article  Google Scholar 

  28. Karimi HR, Pawlus W, Robbersmyr KG (2012) Signal reconstruction, modeling and simulation of a vehicle full-scale crash test based on Morlet wavelets. Neurocomputing 93:88–99

    Article  Google Scholar 

  29. Xu JX, Tan Y (2007) Nonlinear adaptive wavelet control using constructive wavelet networks. IEEE Trans Neural Netw 18(1):115–127

    Article  MathSciNet  Google Scholar 

  30. Xu JX, Yan R (2011) Adaptive learning control for finite interval tracking based on constructive function approximation and wavelet. IEEE Trans Neural Netw 22(6):893–905

    Article  Google Scholar 

  31. Dehghan SAM, Danesh M, Sheikholeslam F, Zekri M (2015) Adaptive force–environment estimator for manipulators based on adaptive wavelet neural network. Appl Soft Comput 28:527–540

    Article  Google Scholar 

  32. Ho DWC, Li J, Niu Y (2005) Adaptive neural control for a class of nonlinearly parametric time delayed systems. IEEE Trans Neural Netw 16(3):625–635

    Article  Google Scholar 

  33. Wai RJ, Duan RY, Lee JD, Chang HH (2003) Wavelet neural network control for induction motor drive using sliding-mode design technique. IEEE Trans Ind Electron 50(4):733–748

    Article  Google Scholar 

  34. Chi HL (2009) Design and application of stable predictive controller using recurrent wavelet neural networks. IEEE Trans Ind Electron 56(9):3733–3742

    Article  Google Scholar 

  35. Lin FJ, Hung YC, Ruan KC (2014) An intelligent second-order sliding-mode control for an electric power steering system using a wavelet fuzzy neural network. IEEE Trans Fuzzy Syst 22(6):1598–1611

    Article  Google Scholar 

  36. Ho DWC, Zhang PA, Xu J (2001) Fuzzy wavelet networks for function learning. IEEE Trans Fuzzy Syst 9(1):200–211

    Article  Google Scholar 

  37. Hsu CH (2011) Adaptive fuzzy wavelet neural controller design for chaos synchronization. Expert Syst Appl 38(8):10475–10483

    Article  Google Scholar 

  38. Lu CH (2011) Wavelet fuzzy neural networks for identification and predictive control of dynamic systems. IEEE Trans Ind Electron 58(7):3046–3058

    Article  Google Scholar 

  39. Kuang HT (2016) Squirrel-cage induction generator system using wavelet petri fuzzy neural network control for wind power applications. IEEE Trans Power Electron 31(7):5242–5254

    Google Scholar 

  40. Abiyev RH, Kaynak O (2008) Fuzzy wavelet neural networks for identification and control of dynamic plants—a novel structure and a comparative study. IEEE Trans Ind Electron 55(8):3133–3140

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant nos. 61175075) National Hightech Research and Development Projects (Grant nos. 2012AA112312, Grant nos. 2012AA11004). The authors would like to thank the editor and the reviewers for their invaluable suggestions, which greatly improved the quality for this paper dramatically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Van Cuong.

Ethics declarations

Conflict of interest

Wang Yao Nan has received research grants from Hunan University. Vu Thi Yen is a lecturer in Saodo University, Vietnam. Pham Van Cuong is a lecturer in Hanoi University of Industry, Vietnam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yen, V.T., Nan, W.Y. & Van Cuong, P. Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators. Neural Comput & Applic 31, 6945–6958 (2019). https://doi.org/10.1007/s00521-018-3520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3520-3

Keywords