Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-source multi-terminal reliability evaluation of interconnection networks

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Multistage interconnection networks (MINs) are often used as switching fabrics in parallel and distributed systems designed to provide fast and efficient communication between high-capacity processors. To ensure desired performance of the networks, the reliability evaluation of MIN is quite evident. Reliability studies on MINs evaluated only traditional parameters (two/broadcast/all terminal reliability). With increasing number of input and output nodes in supercomputer environment reliability evaluation of multi-cast nodes is mandatory. A simple and efficient algorithm, Path Tracing Algorithm proposed to trace minimal path sets of any MINs and then associated reliability (or unreliability) expressions are evaluated. The algorithm found quite simple and robust to trace the minimal path sets of a variety of networks and evaluates Multi-source multi-terminal node reliability of any multistage interconnection networks. Total redundant and disjoint paths for each source–destination pair are also evaluated by using the algorithm. Reliability of various MINs are evaluated, analyzed and compared here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MINs:

Multistage interconnection networks

SEs:

Switching elements

r(t):

Reliability of switching component

N:

Number of inputs/outputs

S:

Source

T:

Terminal

SVI:

Single variable inversion

MVI:

Multiple variable inversion

LB:

Lower bound

UB:

Upper bound

References

  • Aggarwal R, Kaur L (2009) An efficient routing scheme to provide more fault-tolerance for an irregular multistage interconnection network’, Advance Computing Conference, IEEE International, pp 94–98

  • Balkan AO, Qu G, Vishkin U (2009) ‘Mesh-of-trees and alternative interconnection networks for single-chip parallelism’, very large scale integration (VLSI) systems. IEEE Trans 17(10):1419–1432

    Google Scholar 

  • Bansal P, Singh K, Joshi RC (1992) ‘Quad tree: a cost-effective fault-tolerant multistage interconnection network’. In: Proceedings of Eleventh Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE, 2, pp 860–866

  • Birolini A (2007) Reliability engineering: theory and practice. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  • Blake JT, Trivedi KS (1989) Multistage interconnection network reliability. IEEE Trans Comput 38(11):1600–1604

    Article  Google Scholar 

  • Bobbio A, Terruggia R, Ciancamerla E, Minichino M (2011) ‘Reliability analysis of multi-source multi-sink critical interacting systems’. In: Proceedings of 3rd International Workshop on Dependable Control of Discrete Systems, pp 127–132

  • Chandrasheker T, Goyal NK (2013) An approach to evaluate multiple node pair reliability for simultaneous capacity requirements. Int J Perform Eng 9(4):357–366

    Google Scholar 

  • Chaturvedi SK, Misra KB (2002) An efficient multi-variable inversion algorithm for reliability evaluation of complex systems using path sets. Int J Reliab Qual Saf Eng 9(3):237–259

    Article  Google Scholar 

  • Chen Z (2013) ‘A class of incomplete gamma interconnection network’ [Report]. Tsinghua University, China, pp 1–12

  • Chen C-W, Chung C-P (2001) Fault-tolerant gamma interconnection network without backtracking. J Syst Softw 58(1):23–31

    Article  Google Scholar 

  • Chen C-W, Chung C-P (2005) Designing a disjoint paths interconnection network with fault tolerance and collision solving. J Supercomput 34(1):63–80

    Article  Google Scholar 

  • Chen C-W, Fu S-C (2004) A minimal links traversed dynamic rerouting network. Parallel Comput 30(7):883–898

    Article  Google Scholar 

  • Chen C-W, Lu N-P, Chen T-F, Chung C-P (2000) Fault-tolerant gamma interconnection networks by chaining. IEE Proc-Comput Digit Tech 147(2):75–81

    Article  Google Scholar 

  • Chen C-W, Lu N-P, Chung C-P (2003) 3-Disjoint gamma interconnection networks. J Syst Softw 66(2):129–134

    Article  Google Scholar 

  • Cheng L, Venkatesan R, Heys HM (2006) ‘Architecture and performance analysis of the multicast balanced gamma switch for broadband communications’. In: Proceedings of IEEE International Conference on Computer Systems and Applications, pp 381–388

  • Chiuyuan C, Jing-Kai L (2006) An efficient tag-based routing algorithm for the backward network of a bidirectional general shuffle-exchange network. IEEE Commun Lett 10(4):296–298

    Article  Google Scholar 

  • Chuang P-J (1996) CGIN: a fault tolerant modified gamma interconnection network. IEEE Trans Parallel Distrib Syst 7(12):1301–1306

    Article  Google Scholar 

  • Danilewicz G, Rajewski R (2014) The architecture and strict-sense nonblocking conditions of a new baseline-based optical switching network composed of symmetrical and asymmetrical switching elements. IEEE Trans Commun 62(3):1058–1069

    Article  Google Scholar 

  • Distefano S (2009) ‘Reliability and dependability modeling and analysis of dynamic aspects in complex systems’. In: Proceedings of IEEE International Conference on Dependable, autonomic and secure computing, Chengdu, China, pp 43–48

  • Fan CC, Bruck J (2000) Tolerating multiple faults in multistage interconnection networks with minimal extra stages. IEEE Trans Comput 49(9):998–1004

    Article  Google Scholar 

  • Goyal NK (2006) On some aspects of reliability analysis and design of communication networks, Ph.D. dissertation, Indian Institute of Technology Kharagpur, India

  • Goyal NK, Misra KB (2008) Optimum Link Capacity Allocation in a Communication Network. IE (I) J-ET 88:18–21

    Google Scholar 

  • Goyal NK, Misra RB, Chaturvedi SK (2005) SNEM: a new approach to evaluate terminal pair reliability of communication networks. J Qual Maint Eng 11(3):239–253

    Article  Google Scholar 

  • Gunawan I (2008a) Redundant paths and reliability bounds in gamma networks. Appl Math Model 32(4):588–594

    Article  MATH  Google Scholar 

  • Gunawan I (2008b) Reliability analysis of shuffle–exchange network systems. Reliab Eng Syst Saf 93(2):271–276

    Article  Google Scholar 

  • Gunawan I (2013) Reliability prediction of distributed systems using Monte Carlo method. Int J Reliab Saf 7(3):235–248

  • Gunawan I, Fard NS (2012) Terminal reliability assessment of gamma and extra-stage gamma networks. Int J Qual Reliab Manag 29(7):820–831

    Article  Google Scholar 

  • He R, Delgado-Frias JG (2007) Fault tolerant interleaved switching fabrics for scalable high-performance routers. IEEE Trans Parallel Distrib Syst 18(12):1727–1739

    Article  Google Scholar 

  • Jiang X, Pattavina A, Horiguchi S (2008) Strictly nonblocking f-cast photonic networks. IEEE/ACM Trans Netw (TON) 16(3):732–745

    Article  Google Scholar 

  • Koren I, Mani Krishna C (2010) Fault-tolerant systems. Morgan Kaufmann Publishers, San Francisco

    MATH  Google Scholar 

  • Kumar V, Reddy S (1987) Augmented shuffle-exchange multistage interconnection networks. IEEE Trans Comput 20(6):30–40

    Google Scholar 

  • Lee KY, Hegazy W (1998) The extra stage gamma network. IEEE Trans Comput 37(11):1445–1450

    MATH  Google Scholar 

  • Li S-Y, Tan X (2009) On rearrangeability of tandem connection of banyan-type networks. IEEE Trans Commun 57(1):164–170

    Article  Google Scholar 

  • Nieminen E (2014) A contention-free parallel access by butterfly networks for turbo interleavers. IEEE Trans Inf Theory 60(1):237–251

    Article  Google Scholar 

  • Park Wei S, Gyungho L (1988) Extra group network: a cost-effective fault-tolerant multistage interconnection network. ACM SIGARCH Comput Archit News 16(2):108–115

    Article  Google Scholar 

  • Parker D, Raghavendra C (1984) The gamma network. IEEE Trans Comput 100(4):367–373

    Article  MATH  Google Scholar 

  • Pham P-H, Song J, Park J, Kim C (2013) ‘Design and implementation of an on-chip permutation network for multiprocessor system-on-chip’, very large scale integration (VLSI) systems. IEEE Trans 21(1):173–177

    Google Scholar 

  • Rajkumar S, Goyal NK (2014) Design of 4-disjoint gamma interconnection network layouts and reliability analysis of gamma interconnection networks. J Supercomput 69(1):468–491

    Article  Google Scholar 

  • Rajkumar S, Goyal NK (2015a) Review of multistage interconnection networks reliability and fault-tolerance. IETE Tech Review. doi:10.1080/02564602.2015.1102098

    Google Scholar 

  • Rajkumar S, Goyal NK (2015b) Fault tolerant interconnection network design. IETE Tech Rev. doi:10.1080/02564602.2015.1113146

    Google Scholar 

  • Rajkumar S, Goyal NK (2015c) Reliability analysis of multistage interconnection networks. Qual Reliab Eng Int. doi:10.1002/qre.1941

  • Rajkumar S, Goyal NK (2015d) Reliable multistage interconnection network design. Peer-to-Peer Netw Appl. doi:10.1007/s12083-015-0368-5

  • Raponi PG, Andriolli N, Cerutti I, Torres D, Liboiron-Ladouceur O, Castoldi P (2013) Heterogeneous optical space switches for scalable and energy-efficient data centers. J Lightwave Technol 31(11):1713–1719

    Article  Google Scholar 

  • Sengupta J, Bansal P (2001) High speed dynamic fault-tolerance’. Procs IEEE Reg 10 Int Conf Electr Electron Technol 2:669–675

    Article  Google Scholar 

  • Sengupta J, Bansal P (2004) ‘Performance analysis of static and dynamic fault-tolerant irregular networks’. In: Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology, pp 5–8

  • Shen X, Yang F, Pan Y (2001) Equivalent permutation capabilities between time-division optical omega networks and non-optical extra-stage omega networks. IEEE/ACM Trans Netw (TON) 9(4):518–524

    Article  Google Scholar 

  • Shooman ML (2001) Reliability of computer systems and networks: fault tolerance, analysis, and design. Wiley Interscience, New York

    Google Scholar 

  • Verlinden S, Deconinck G, Coupe B (2012) Hybrid reliability model for nuclear reactor safety system. Reliab Eng Syst Saf 101:35–47

    Article  Google Scholar 

  • Wang W, Mingxiao J (2004) ‘Generalized decomposition method for complex systems’. In: Reliability and maintainability annual symposium—RAMS, pp 12–17

  • Yang Y, Wang J (2004) A class of multistage conference switching networks for group communication. IEEE Trans Parallel Distrib Syst 15(3):228–243

    Article  Google Scholar 

  • Yang Y, Wang J (2005) Routing permutations on baseline networks with node-disjoint paths. IEEE Trans Parallel Distrib Syst 16(8):737–746

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, N.K., Rajkumar, S. Multi-source multi-terminal reliability evaluation of interconnection networks. Microsyst Technol 23, 255–274 (2017). https://doi.org/10.1007/s00542-015-2743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2743-9

Keywords