Abstract
We deal with operational fixed interval scheduling problem with random delays in job processing times. We formulate two stochastic programming problems. In the first problem with a probabilistic objective, all jobs are processed on available machines and the goal is to obtain a schedule with the highest attainable reliability. The second problem is to select a subset of jobs with the highest reward under a chance constraint ensuring feasibility of the schedule with a prescribed probability. We assume that the multivariate distribution of delays follows an Archimedean copula, whereas there are no restrictions on marginal distributions. We introduce new deterministic integer linear reformulations based on flow problems. We compare the formulations with the extended robust coloring problem, which was shown to be a deterministic equivalent to the stochastic programming problem with probabilistic objective by Branda et al. (Comput Ind Eng 93:45–54, 2016). In the numerical study, we report average computational times necessary to solve a large number of simulated instances. It turns out that the new flow-based formulation helps to solve the FIS problems considerably faster than the other one.
Similar content being viewed by others
References
van Ackooij W (2015) Eventual convexity of chance constrained feasible sets. Optimization 64(5):1263–1284. doi:10.1080/02331934.2013.855211
van Ackooij W, de Oliveira W (2016) Convexity and optimization with copula structured probabilistic constraints. Optimization, to appear:1–28. doi:10.1080/02331934.2016.1179302
Angelelli E, Filippi C (2011) On the complexity of interval scheduling with a resource constraint. Theor Comput Sci 412(29):3650–3657. doi:10.1016/j.tcs.2011.03.025
Angelelli E, Bianchessi N, Filippi C (2014) Optimal interval scheduling with a resource constraint. Comput Oper Res 51:268–281. doi:10.1016/j.cor.2014.06.002
Beraldi P, Bruni M (2010) An exact approach for solving integer problems under probabilistic constraints with random technology matrix. Ann Oper Res 177(1):127–137. doi:10.1007/s10479-009-0670-9
Branda M (2012) Sample approximation technique for mixed-integer stochastic programming problems with several chance constraints. Oper Res Lett 40(3):207–211. doi:10.1016/j.orl.2012.01.002
Branda M, Novotný J, Olstad A, Popela P (2015) A note on fixed interval scheduling with stochastic elements. Inform Bull Czech Stat Soc 26(4):1–7. http://www.statspol.cz/en
Branda M, Novotný J, Olstad A (2016) Fixed interval scheduling under uncertainty a tabu search algorithm for an extended robust coloring formulation. Comput Ind Eng 93:45–54. doi:10.1016/j.cie.2015.12.021
Bremer I, Henrion R, Möller A (2015) Probabilistic constraints via SQP solver: application to a renewable energy management problem. Comput Manag Sci 12(3):435–459. doi:10.1007/s10287-015-0228-z
Brucker P, Qu R, Burke E (2011) Personnel scheduling: models and complexity. Eur J Oper Res 210(3):467–473. doi:10.1016/j.ejor.2010.11.017
Castillo-Salazar JA, Landa-Silva D, Qu R (2016) Workforce scheduling and routing problems: literature survey and computational study. Ann Oper Res 239(1):39–67. doi:10.1007/s10479-014-1687-2
Cheng J, Houda M, Lisser A (2015) Chance constrained 0–1 quadratic programs using copulas. Optim Lett 9(7):1283–1295. doi:10.1007/s11590-015-0854-y
CPLEX (version 12.1) IBM ILOG V12.1: user’s manual for CPLEX. ftp://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf. Accessed 12 Aug 2016
Dentcheva D, Martinez G (2012) Augmented Lagrangian method for probabilistic optimization. Ann Oper Res 200(1):109–130. doi:10.1007/s10479-011-0884-5
Eliiyi DT (2013) Integrating tactical and operational decisions in fixed job scheduling. Eng Optim 45(12):1449–1467. doi:10.1080/0305215X.2012.743532
GAMS (version 24.3.3) GAMS user’s guide. http://www.gams.com/help/index.jsp
Henrion R, Strugarek C (2011) Stochastic optimization methods in finance and energy: new financial products and energy market strategies. In: Convexity of chance constraints with dependent random variables: the use of copulae. Springer, New York, pp 427–439
Kall P, Mayer J (2011) Stochastic linear programming: models, theory, and computation. International series in operations research & management science. Springer, New York
Kimberling CH (1974) A probabilistic interpretation of complete monotonicity. Aequ Math 10(2):152–164. doi:10.1007/BF01832852
Kogan A, Lejeune MA (2014) Threshold boolean form for joint probabilistic constraints with random technology matrix. Math Progr 147(1):391–427. doi:10.1007/s10107-013-0728-y
Kolen AW, Lenstra JK, Papadimitriou CH, Spieksma FC (2007) Interval scheduling: a survey. Naval Res Logist 54(5):530–543
Kovalyov MY, Ng C, Cheng TE (2007) Fixed interval scheduling: models, applications, computational complexity and algorithms. Eur J Oper Res 178(2):331–342. doi:10.1016/j.ejor.2006.01.049
Kroon LG, Salomon M, Wassenhove LNV (1995) Exact and approximation algorithms for the operational fixed interval scheduling problem. Eur J Oper Res 82(1):190–205. doi:10.1016/0377-2217(93)E0335-U
Kroon LG, Salomon M, Wassenhove LNV (1997) Exact and approximation algorithms for the tactical fixed interval scheduling problem. Oper Res 45(4):624–638
Luedtke J, Ahmed S (2008) A sample approximation approach for optimization with probabilistic constraints. SIAM J Optim 19(2):674–699. doi:10.1137/070702928
Luedtke J, Ahmed S, Nemhauser G (2010) An integer programming approach for linear programs with probabilistic constraints. Math Progr 122(2):247–272. doi:10.1007/s10107-008-0247-4
Mathematica (version 9) Wolfram documentation center. http://reference.wolfram.com/language/
McNeil AJ, Nešlehová J (2009) Multivariate archimedean copulas, d-monotone functions and \(l_1\)-norm symmetric distributions. Ann Stat 37(5B):3059–3097. doi:10.1214/07-AOS556
McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques and tools. Princeton series in finance. Princeton University Press, Princeton
Michalopoulos DP, Barnes JW, Morton DP (2015) Prioritized interdiction of nuclear smuggling via tabu search. Optim Lett 9(8):1477–1494. doi:10.1007/s11590-014-0829-4
Molina-Pariente JM, Hans EW, Framinan JM, Gomez-Cia T (2015) New heuristics for planning operating rooms. Comput Ind Eng 90:429–443. doi:10.1016/j.cie.2015.10.002
Nelsen R (1999) An introduction to copulas. Lecture notes in statistics. Springer, New York
Ng CT, Cheng TCE, Bandalouski AM, Kovalyov MY, Lam SS (2014) A graph-theoretic approach to interval scheduling. J Oper Res Soc 65(10):1571–1579. doi:10.1057/jors.2013.109
Parisio A, Jones CN (2015) A two-stage stochastic programming approach to employee scheduling in retail outlets with uncertain demand. Omega 53:97–103. doi:10.1016/j.omega.2015.01.003
Prékopa A (1995) Stochastic programming. Kluwer, Académiai Kiadó, Dordrecht and Budapest
Prékopa A (2003) Probabilistic programming. In: Ruszczyński A, Shapiro A (eds) Stochastic programming, handbooks in operations research and management science, vol 10. Elsevier, pp 267–351. doi:10.1016/S0927-0507(03)10005-9
Ruszczyński A, Shapiro A (2003) Stochastic programming. Handbooks in operations research and management science. Elsevier, Amsterdam
Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Algorithms and combinatorics. Springer, New York
Shan F, Zhang L, Xiao X (2014) A smoothing function approach to joint chance-constrained programs. J Optim Theory Appl 163(1):181–199. doi:10.1007/s10957-013-0513-3
Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming. MOS-SIAM series on optimization. SIAM Society for Industrial and Applied Mathematics, Philadelphia
Tahanan M, van Ackooij W, Frangioni A, Lacalandra F (2015) Large-scale unit commitment under uncertainty. 4OR 13(2):115–171. doi:10.1007/s10288-014-0279-y
Toth P, Vigo D (2001) The vehicle routing problem. In: An overview of vehicle routing problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp 1–26
Yánez J, Ramírez J (2003) The robust coloring problem. Eur J Oper Res 148(3):546–558. doi:10.1016/S0377-2217(02)00362-4
Acknowledgments
The authors gratefully acknowledge that this project was supported by the Czech Science Foundation under the Grant P402/12/G097 (DYME). We would like to express our gratitude to the anonymous referees for their valuable comments which helped us to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Branda, M., Hájek, Š. Flow-based formulations for operational fixed interval scheduling problems with random delays. Comput Manag Sci 14, 161–177 (2017). https://doi.org/10.1007/s10287-016-0262-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10287-016-0262-5
Keywords
- Fixed interval scheduling
- Random delays
- Stochastic programming
- Flow-based formulation
- Archimedean copula
- Integer programming