Abstract
Atrial fibrillation (AF) is a rhythm disorder with rapidly increasing prevalence due to the aging of the population. AF triggers structural remodeling and a gradual loss of function; however, the relative contributions of specific features of AF-induced remodeling to changes in atrial mechanical function are unclear. We constructed and validated a finite-element model (FEM) of the normal human left atrium using anatomic information from cardiac magnetic resonance imaging, material properties and fiber orientations from published studies, and an iterative algorithm to estimate unloaded geometry. We coupled the FEM to a circuit model to capture hemodynamic interactions between the atrium, pulmonary circulation, and left ventricle. The normal model reproduced measured volumes within 1 SD, as well as most metrics of regional mechanics. Using this validated human model as a starting point, we explored the impact of individual features of atrial remodeling on atrial mechanics and found that a combination of dilation, increased pressure, and fibrosis can explain most of the observed changes in mechanics in patients with paroxysmal AF. However, only impaired ventricular relaxation could reproduce the increased reliance on active emptying we observed in these patients. The resulting model provides new insight into the mechanics of AF and a platform for exploring future therapies.
Similar content being viewed by others
References
Alexander, J., K. Sunagawa, N. Chang, and K. Sagawa. Instantaneous pressure-volume relation of the ejecting canine left atrium. Circ. Res. 61:209–219, 1987.
Bellini, C., and E. S. Di Martino. A mechanical characterization of the porcine atria at the healthy stage and after ventricular tachypacing. J. Biomech. Eng. 134:021008, 2012.
Blume, G. G., C. J. Mcleod, M. E. Barnes, J. B. Seward, P. A. Pellikka, P. M. Bastiansen, and T. S. M. Tsang. Left atrial function: physiology, assessment, and clinical implications. Eur. J. Echocardiogr. 12:421–430, 2011.
Boyd, A. C., N. B. Schiller, D. Leung, D. L. Ross, and L. Thomas. Atrial dilation and altered function are mediated by age and diastolic function but not before the eighth decade. JACC Cardiovasc. Imaging 4:234–242, 2011.
Clark, D. M., V. J. Plumb, A. E. Epstein, and G. N. Kay. Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J. Am. Coll. Cardiol. 30:1039–1045, 1997.
Di Martino, E. S., C. Bellini, and D. S. Schwartzman. In vivo porcine left atrial wall stress: computational model. J. Biomech. 44:2589–2594, 2011.
Di Martino, E. S., C. Bellini, and D. S. Schwartzman. In vivo porcine left atrial wall stress: effect of ventricular tachypacing on spatial and temporal stress distribution. J. Biomech. 44:2755–2760, 2011.
Doessel, O., M. W. Krueger, F. M. Weber, M. Wilhelms, and G. Seemann. Computational modeling of the human left atrial anatomy and electrophysiology. Med. Biol. Eng. Comput. 50:773–799, 2012.
Fomovsky, G. M., and J. W. Holmes. Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am. J. Physiol. Heart Circ. Physiol. 298:H221–H228, 2010.
Frost, L. Lone atrial fibrillation: good, bad, or ugly? Circulation 115:3040–3041, 2007.
Gloschat, C., J. Cates, B. Walker, and R. S. MacLeod. Statistical shape modeling of the left atrium from MRI of patients with atrial fibrillation. J. Cardiovasc. Magn. Reson. 13:P57, 2011.
Go, A. S., E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation (ATRIA) study. JAMA 285:2370–2375, 2001.
Govindjee, S., and P. A. Mihalic. Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Eng. 136:47–57, 1996.
Guccione, J. M., and A. D. McCulloch. Mechanics of active contraction in cardiac muscle: part I—constitutive relations for fiber stress that describe deactivation. J. Biomech. Eng. 115:72–81, 1993.
Guyton, A. C., A. W. Lindsey, B. Abernathy, and T. Richardson. Venous return at various right atrial pressures and the normal venous return curve. Am. J. Physiol. 189:609–615, 1957.
Hay, I., J. Rich, P. Ferber, D. Burkhoff, and M. S. Maurer. Role of impaired myocardial relaxation in the production of elevated left ventricular filling pressure. Am. J. Physiol. Heart Circ. Physiol. 288:H1203–H1208, 2005.
Ho, S. Y., R. H. Anderson, and D. Sánchez-Quintana. Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc. Res. 54:325–336, 2002.
Ho, S. Y., D. Sanchez-Quintana, J. A. Cabrera, and R. H. Anderson. Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 10:1525–1533, 1999.
Hunter, R. J., Y. Liu, Y. Lu, W. Wang, and R. J. Schilling. Left atrial wall stress distribution and its relationship to electrophysiologic remodeling in persistent atrial fibrillation. Circ. Arrhythm. Electrophysiol. 5:351–360, 2012.
Jahnke, C., J. Fischer, J.-H. Gerds-Li, R. Gebker, R. Manka, E. Fleck, I. Paetsch, and C. Kriatselis. Serial monitoring of reverse left-atrial remodeling after pulmonary vein isolation in patients with atrial fibrillation: a magnetic resonance imaging study. Int. J. Cardiol. 153:42–46, 2011.
Jaïs, P., J. T. Peng, D. C. Shah, S. Garrfgue, M. Hocini, T. Yamane, M. Haissaguerre, S. S. Barold, R. Roudaut, and J. Clementy. Left ventricular diastolic dysfunction in patients with so-called lone atrial fibrillation. J. Cardiovasc. Electrophysiol. 11:623–625, 2000.
Jernigan, S. R., G. D. Buckner, J. W. Eischen, and D. R. Cormier. Finite element modeling of the left atrium to facilitate the design of an endoscopic atrial retractor. J. Biomech. Eng. 129:825–837, 2007.
Kerckhoffs, R. C. P., M. L. Neal, Q. Gu, J. B. Bassingthwaighte, J. H. Omens, and A. D. McCulloch. Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann. Biomed. Eng. 35:1–18, 2007.
Lorenz, C. H., E. S. Walker, V. L. Morgan, S. S. Klein, and T. P. Graham. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 1:7–21, 1999.
Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134:011005, 2012.
Markides, V., R. J. Schilling, S. Yen Ho, A. W. C. Chow, D. W. Davies, and N. S. Peters. Characterization of left atrial activation in the intact human heart. Circulation 107:733–739, 2003.
Moyer, C. B. Mechanical function of the left atrium. PhD Thesis, University of Virginia, 2013. http://libra.virginia.edu/catalog/libra-oa:3938.
Moyer, C. B., P. Helm, C. J. Clarke, L. P. Budge, C. M. Kramer, J. D. Ferguson, P. T. Norton, and J. W. Holmes. Wall-motion based analysis of global and regional left atrial mechanics. IEEE Trans. Med. Imaging 32:1765–1776, 2013.
Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 415:219–226, 2002.
Platonov, P. G., L. B. Mitrofanova, V. Orshanskaya, and S. Y. Ho. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J. Am. Coll. Cardiol. 58:2225–2232, 2011.
Prioli, A., P. Marino, L. Lanzoni, and P. Zardini. Increasing degrees of left ventricular filling impairment modulate left atrial function in humans. Am. J. Cardiol. 82:756–761, 1998.
Raghavan, M. L., B. Ma, and M. F. Fillinger. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann. Biomed. Eng. 34:1414–1419, 2006.
Sanfilippo, A., V. Abascal, M. Sheehan, L. Oertel, P. Harrigan, R. Hughes, and A. Weyman. Atrial enlargement as a consequence of atrial fibrillation: a prospective echocardiographic study. Circulation 82:792–797, 1990.
Schwartzman, D., J. Lacomis, and W. G. Wigginton. Characterization of left atrium and distal pulmonary vein morphology using multidimensional computed tomography. J. Am. Coll. Cardiol. 41:1349–1357, 2003.
Stefanadis, C., J. Dernellis, C. Stratos, E. Tsiamis, C. Tsioufis, K. Toutouzas, C. Vlachopoulos, C. Pitsavos, and P. Toutouzas. Assessment of left atrial pressure-area relation in humans by means of retrograde left atrial catheterization and echocardiographic automatic boundary detection: effects of dobutamine. J. Am. Coll. Cardiol. 31:426–436, 1998.
Stefanadis, C., J. Dernellis, C. Stratos, E. Tsiamis, C. Vlachopoulos, K. Toutouzas, S. Lambrou, C. Pitsavos, and P. Toutouzas. Effects of balloon mitral valvuloplasty on left atrial function in mitral stenosis as assessed by pressure–area relation. J. Am. Coll. Cardiol. 32:159–168, 1998.
Wolf, P., R. Abbott, and W. Kannel. Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 22:983–988, 1991.
Zhao, J., T. D. Butters, H. Zhang, I. LeGrice, G. B. Sands, and B. H. Smaill. Image-based model of atrial anatomy and electrical activation: a computational platform for investigating atrial arrhythmia. IEEE Trans. Med. Imaging 32:18–27, 2013.
Acknowledgments
The authors wish to thank Dr. David Lopez for processing atrial MRI and pressure–volume loops. This work was supported in part by a Pre-Doctoral Fellowship (Christian Moyer) and an Established Investigator Award (Jeffrey Holmes) from the AHA, and NIH/NHLBI R01 HL-085160 (Jeffrey Holmes).
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Estefanía Peña oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Moyer, C.B., Norton, P.T., Ferguson, J.D. et al. Changes in Global and Regional Mechanics Due to Atrial Fibrillation: Insights from a Coupled Finite-Element and Circulation Model. Ann Biomed Eng 43, 1600–1613 (2015). https://doi.org/10.1007/s10439-015-1256-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-015-1256-0