Abstract
Lutwak established the Brunn–Minkowski inequality for projection bodies. Schuster [13] obtained the Brunn–Minkowski inequality for polar projection bodies. Associated with the \(L_p\)-Minkowski combinations of convex bodies, we extend Lutwak's result and Schuster's result to \(L_p\) forms, respectively.
Similar content being viewed by others
References
C. Bianchini, A. Colesanti, D. Pagnini and A. Roncoroni, On \(p\)-Brunn-Minkowski inequalities for intrinsic volumes with \(0\leq p<1\), Math. Ann., 387 (2023), 321- 352.
K. J. Böröczky, E. Lutwak, D. Yang and G. Y. Zhang, The log-Brunn-Minkowski inequality, Adv. Math., 231 (2012), 1974-1997.
S. B. Chen, Y. Huang, Q. R. Li and J. Liu, The \(L_p\)-Brunn-Minkowski inequality for \(p < 1\), Adv. Math., 368 (2020), 107166, 21 pp.
A. Colesanti, G. V. Livshyts and A. Marsiglietti, On the stability of Brunn-Minkowski type inequalities, J. Funct. Anal., 273 (2017), 1120-1139.
W. J. Firey, \(p\)-means of convex bodies, Math. Scand., 10 (1962), 17-24.
R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39 (2002), 355-405.
R. J. Gardner, Geometric Tomography, 2nd ed., Cambridge Univ. Press (Cambridge, 2006).
R. J. Gardner and A. Zvavitch, Gaussian Brunn-Minkowski inequalities, Trans. Amer. Math. Soc., 362 (2010), 5333-5353.
E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc., 339 (1993), 901-916.
E. Lutwak, The Brunn-Minkowski-Firey theory. I: mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131-150.
M. Ritoré and J. Y. Nicolás, Brunn-Minkowski inequalities in product metric measure spaces, Adv. Math., 325 (2018), 824-863.
R. Schneider, Convex Bodies: The Brunn-Minkowski theory, 2nd ed., Cambridge University Press (Cambridge, 2014).
F. E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika, 53 (2006), 211-234.
W. D. Wang, W. Shi and S. Ye, Dual mixed Orlicz-Brunn-Minkowski inequality and dual Orlicz mixed quermassintegrals, Indag. Math., 28 (2017), 721-735.
W. D. Wang and Y. P. Zhou, Some inequalities for the \(p\)-quermassintegrals, Funct. Anal. Appl., 57 (2023), 170-179.
W. D. Wang and Y. P. Zhou, Some inequalities for the dual \(p\)-quermassintegrals, Pure Appl. Math. Q., 19 (2023), 681-696.
D. M. Xi, H. L. Jin and G. S. Leng, The Orlicz-Brunn-Minkowski inequality, Adv. Math., 260 (2014), 350-374.
B. C. Zhu, J. Z. Zhou and W. X. Xu, Dual Orlicz-Brunn-Minkowski theory, Adv. Math., 264 (2014), 700-725.
Acknowledgement
The author likes to sincerely thank the reviewers for very valuable and helpful comments and suggestions which made the paper more accurate and readable.
Author information
Authors and Affiliations
Corresponding author
Additional information
Research is supported in part by the Natural Science Foundation of China (Grant No. 11371224).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, W.D. \(L_p\)-Brunn–Minkowski inequality for projection bodies. Acta Math. Hungar. 174, 192–201 (2024). https://doi.org/10.1007/s10474-024-01468-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10474-024-01468-1