Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

\(L_p\)-Brunn–Minkowski inequality for projection bodies

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Lutwak established the Brunn–Minkowski inequality for projection bodies. Schuster [13] obtained the Brunn–Minkowski inequality for polar projection bodies. Associated with the \(L_p\)-Minkowski combinations of convex bodies, we extend Lutwak's result and Schuster's result to \(L_p\) forms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bianchini, A. Colesanti, D. Pagnini and A. Roncoroni, On \(p\)-Brunn-Minkowski inequalities for intrinsic volumes with \(0\leq p<1\), Math. Ann., 387 (2023), 321- 352.

  2. K. J. Böröczky, E. Lutwak, D. Yang and G. Y. Zhang, The log-Brunn-Minkowski inequality, Adv. Math., 231 (2012), 1974-1997.

  3. S. B. Chen, Y. Huang, Q. R. Li and J. Liu, The \(L_p\)-Brunn-Minkowski inequality for \(p < 1\), Adv. Math., 368 (2020), 107166, 21 pp.

  4. A. Colesanti, G. V. Livshyts and A. Marsiglietti, On the stability of Brunn-Minkowski type inequalities, J. Funct. Anal., 273 (2017), 1120-1139.

  5. W. J. Firey, \(p\)-means of convex bodies, Math. Scand., 10 (1962), 17-24.

  6. R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39 (2002), 355-405.

  7. R. J. Gardner, Geometric Tomography, 2nd ed., Cambridge Univ. Press (Cambridge, 2006).

  8. R. J. Gardner and A. Zvavitch, Gaussian Brunn-Minkowski inequalities, Trans. Amer. Math. Soc., 362 (2010), 5333-5353.

  9. E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc., 339 (1993), 901-916.

  10. E. Lutwak, The Brunn-Minkowski-Firey theory. I: mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131-150.

  11. M. Ritoré and J. Y. Nicolás, Brunn-Minkowski inequalities in product metric measure spaces, Adv. Math., 325 (2018), 824-863.

  12. R. Schneider, Convex Bodies: The Brunn-Minkowski theory, 2nd ed., Cambridge University Press (Cambridge, 2014).

  13. F. E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika, 53 (2006), 211-234.

  14. W. D. Wang, W. Shi and S. Ye, Dual mixed Orlicz-Brunn-Minkowski inequality and dual Orlicz mixed quermassintegrals, Indag. Math., 28 (2017), 721-735.

  15. W. D. Wang and Y. P. Zhou, Some inequalities for the \(p\)-quermassintegrals, Funct. Anal. Appl., 57 (2023), 170-179.

  16. W. D. Wang and Y. P. Zhou, Some inequalities for the dual \(p\)-quermassintegrals, Pure Appl. Math. Q., 19 (2023), 681-696.

  17. D. M. Xi, H. L. Jin and G. S. Leng, The Orlicz-Brunn-Minkowski inequality, Adv. Math., 260 (2014), 350-374.

  18. B. C. Zhu, J. Z. Zhou and W. X. Xu, Dual Orlicz-Brunn-Minkowski theory, Adv. Math., 264 (2014), 700-725.

Download references

Acknowledgement

The author likes to sincerely thank the reviewers for very valuable and helpful comments and suggestions which made the paper more accurate and readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Wang.

Additional information

Research is supported in part by the Natural Science Foundation of China (Grant No. 11371224).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.D. \(L_p\)-Brunn–Minkowski inequality for projection bodies. Acta Math. Hungar. 174, 192–201 (2024). https://doi.org/10.1007/s10474-024-01468-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-024-01468-1

Key words and phrases

Mathematics Subject Classification