Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finite Distributive Semilattices

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

The present article aims to develop a categorical duality for the category of finite distributive join-semilattices and \(\wedge \)-homomorphisms (maps that preserve the joins and the meets, when they exist). This dual equivalence is a generalization of the famous categorical duality given by Birkhoff for finite distributive lattices. Moreover, we show that every finite distributive semilattice is a Hilbert algebra with supremum. We obtain some applications from the dual equivalence. We provide a dual description of the 1–1 and onto \(\wedge \)-homomorphisms, and we obtain a dual characterization of some subalgebras. Finally, we present a representation for the class of finite semi-boolean algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Notes

  1. Notice that we are allowing that the empty set is an ideal.

  2. This result is a direct generalization from the lattice case, and it was proved by Dr. Ismael Calomino.

References

  1. Abbott, J.C.: Implicational algebras. Bull. Math. R. S. Roumanie 11(1), 3–23 (1967)

    MathSciNet  MATH  Google Scholar 

  2. Abbott, J.C.: Semi-boolean algebra. Mat. Vesn. 4(19), 177–198 (1967)

    MathSciNet  MATH  Google Scholar 

  3. Balbes, R.: A representation theory for prime and implicative semilattices. Trans. Am. Math. Soc. 136, 261–267 (1969)

    Article  MathSciNet  Google Scholar 

  4. Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)

    Article  MathSciNet  Google Scholar 

  5. Calomino, I., Celani, S.: A note on annihilators in distributive nearlattices. Miskolc Math. Notes 16(1), 65–78 (2015)

    Article  MathSciNet  Google Scholar 

  6. Calomino, I., González, L.J.: Remarks on normal distributive nearlattices. Quaest. Math. 44(4), 513–524 (2021)

    Article  MathSciNet  Google Scholar 

  7. Celani, S., Calomino, I.: Stone style duality for distributive nearlattices. Algebra Universalis 71(2), 127–153 (2014)

    Article  MathSciNet  Google Scholar 

  8. Celani, S., Calomino, I.: On homomorphic images and the free distributive lattice extension of a distributive nearlattice. Rep. Math. Log. 51, 57–73 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Celani, S., Calomino, I.: Distributive nearlattices with a necessity modal operator. Math. Slovaca 69, 35–52 (2019)

    Article  MathSciNet  Google Scholar 

  10. Celani, S., Montangie, D.: Hilbert algebras with supremum. Algebra Universalis 67(3), 237–255 (2012)

    Article  MathSciNet  Google Scholar 

  11. Chajda, I., Kolařík, M.: Nearlattices. Discrete Math. 308(21), 4906–4913 (2008)

    Article  MathSciNet  Google Scholar 

  12. Cornish, W.H., Hickman, R.C.: Weakly distributive semilattices. Acta Math. Hungar. 32(1), 5–16 (1978)

    Article  MathSciNet  Google Scholar 

  13. Diego, A.: Sur les algèbres de Hilbert. In: Collection de Logique Mathématique, A, vol. 21. Gauthier-Villars (1966)

  14. González, L.J.: The logic of distributive nearlattices. Soft Comput. 22(9), 2797–2807 (2018)

    Article  Google Scholar 

  15. González, L.J.: Selfextensional logics with a distributive nearlattice term. Arch. Math. Log. 58, 219–243 (2019)

    Article  MathSciNet  Google Scholar 

  16. González, L.J., Calomino, I.: A completion for distributive nearlattices. Algebra Universalis 80, 48 (2019)

    Article  MathSciNet  Google Scholar 

  17. González, L.J., Calomino, I.: Finite distributive nearlattices. Discrete Math. 344(9), 1–8 (2021)

    Article  MathSciNet  Google Scholar 

  18. Halaš, R.: Subdirectly irreducible distributive nearlattices. Miskolc Math. Notes 7, 141–146 (2006)

    Article  MathSciNet  Google Scholar 

  19. Hickman, R.C.: Join algebras. Commun. Algebra 8(17), 1653–1685 (1980)

    Article  MathSciNet  Google Scholar 

  20. Hickman, R.C.: Mildly distributive semilattices. J. Aust. Math. Soc. 36(3), 287–315 (1984)

    Article  MathSciNet  Google Scholar 

  21. Idziak, P.: Lattice operations in BCK-algebras. Math. Jpn. 29(6), 839–846 (1984)

    MathSciNet  MATH  Google Scholar 

  22. Rasiowa, H.: An Algebraic Approach to Non-classical Logics. North-Holland, Amsterdam (1974)

    MATH  Google Scholar 

  23. Varlet, J.C.: On separation properties in semilattices. Semigroup Forum 10, 220–228 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am very grateful to the anonymous reviewer for his/her comments and suggestions that helped me to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano J. González.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Communicated by Jorge Picado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by FONCyT-ANPCyT (Argentina) under the Grant PICT-2019-00674, by Universidad Nacional de La Pampa under the Grant P.I. No 78M, Res. 523/19, and by FONCyT-ANPCyT (Argentina) under the Grant PICT-2019-00882.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, L.J. Finite Distributive Semilattices. Appl Categor Struct 30, 641–658 (2022). https://doi.org/10.1007/s10485-021-09669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-021-09669-3

Keywords

Mathematics Subject Classification