Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A new complete color normalization method for H&E stained histopatholgical images

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The popularity of digital histopathology is growing rapidly in the development of computer aided disease diagnosis systems. However, the color variations due to manual cell sectioning and stain concentration make the process challenging in various digital pathological image analysis such as histopathological image segmentation and classification. Hence, the normalization of these variations are needed to obtain the promising results. The proposed research intends to introduce a reliable and robust new complete color normalization method, addressing the problems of color and stain variability. The new complete color normalization involves three phases, namely enhanced fuzzy illuminant normalization, fuzzy-based stain normalization, and modified spectral normalization. The extensive simulations are performed and validated on histopathological images. The presented algorithm outperforms the existing conventional normalization methods by overcoming the certain limitations and challenges. As per the experimental quality metrics and comparative analysis, the proposed algorithm performs efficiently and provides promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Petushi S, Garcia F U, Haber M M, Katsinis C, Tozeren A (2006) Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med Imaging 6(1):14

    Article  Google Scholar 

  2. Kayser G, Riede U, Werner M, Hufnagl P, Kayser K (2002) Towards an automated morphological classification of histological images of common lung carcinomas. Elec J Pathol Histol 8:022–03

    Google Scholar 

  3. Schmid K, Angerstein N, Geleff S, Gschwendtner A (2006) Quantitative nuclear texture features analysis confirms who classification 2004 for lung carcinomas. Modern Pathol 19(3):453–459

    Article  Google Scholar 

  4. Greenberg S D (1984) Computer-assisted image analysis cytology. Karger, S Publishers

  5. Yoo T S (2004) Insight into images: principles and practice for segmentation, registration, image analysis. AK Peters/CRC Press

  6. Mittal H, Saraswat M (2019) An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering. Swarm Evol Comput 45:15–32

    Article  Google Scholar 

  7. Aswathy M, Jagannath M (2017) Detection of breast cancer on digital histopathology images: present status and future possibilities. Inform Med Unlocked 8:74–79

    Article  Google Scholar 

  8. He L, Long L R, Antani S, Thoma G R (2012) Histology image analysis for carcinoma detection and grading. Comput Methods Progr Biomed 107(3):538–556

    Article  Google Scholar 

  9. Mittal H, Saraswat M (2019) An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering. Swarm Evol Comput 45:15–32

    Article  Google Scholar 

  10. Wang Z, Bovik A C, Sheikh H R, Simoncelli E P (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  11. Chandler D E, Roberson RW (2009) Bioimaging: current concepts in light and electron microscopy. Jones & Bartlett Publishers

  12. Belsare A, Mushrif M (2012) Histopathological image analysis using image processing techniques: an overview. Signal Image Process 3(4):23

    Google Scholar 

  13. Gour M, Jain S, Sunil Kumar T (2020) Residual learning based cnn for breast cancer histopathological image classification. Int J Imaging Syst Technols

  14. Karl J W, Maurer B A (2010) Multivariate correlations between imagery and field measurements across scales: comparing pixel aggregation and image segmentation. Landsc Ecol 25(4):591–605

    Article  Google Scholar 

  15. Onder D, Zengin S, Sarioglu S (2014) A review on color normalization and color deconvolution methods in histopathology. Appl Immunohistochem Mol Morphol 22(10):713–719

    Article  Google Scholar 

  16. Saraswat M, Arya K (2014) Automated microscopic image analysis for leukocytes identification: a survey. Micron 65:20–33

    Article  Google Scholar 

  17. Saraswat M, Arya K (2013) Colour normalisation of histopathological images. Comput Methods Biomech Biomed Eng: Imaging Visual 1(4):185–197

    Google Scholar 

  18. Lakshmanan B, Anand S, Jenitha T (2019) Stain removal through color normalization of haematoxylin and eosin images: a review. J Phys: Conf Ser 1362(1):012108. IOP Publishing

    Google Scholar 

  19. Ruderman D L, Cronin T W, Chiao C -C (1998) Statistics of cone responses to natural images: implications for visual coding. JOSA A 15(8):2036–2045

    Article  Google Scholar 

  20. Bejnordi B E, Litjens G, Timofeeva N, Otte-Höller I, Homeyer A, Karssemeijer N, van der Laak J A (2015) Stain specific standardization of whole-slide histopathological images. IEEE Trans Med Imaging 35(2):404–415

    Article  Google Scholar 

  21. Vahadane A, Peng T, Albarqouni S, Baust M, Steiger K, Schlitter A M, Sethi A, Esposito I, Navab N (2015) Structure-preserved color normalization for histological images. In: 2015 IEEE 12th international symposium on biomedical imaging (ISBI). IEEE, pp 1012–1015

  22. Dhal K G, Ray S, Das S, Biswas A, Ghosh S (2019) Hue-preserving and gamut problem-free histopathology image enhancement. Iran J Sci Technol Trans Electr Eng 43(3):645–672

    Article  Google Scholar 

  23. BenTaieb A, Hamarneh G (2017) Adversarial stain transfer for histopathology image analysis. IEEE Trans Med Imaging 37(3):792–802

    Article  Google Scholar 

  24. Shaban MT, Baur C, Navab N, Albarqouni S (2019) Staingan: stain style transfer for digital histological images. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019). IEEE, pp 953–956

  25. Zheng Y, Jiang Z, Zhang H, Xie F, Shi J, Xue C (2019) Adaptive color deconvolution for histological WSI normalization. Comput Methods Progr Biomed 170:107–120

    Article  Google Scholar 

  26. Maji P, Mahapatra S (2019) Rough-fuzzy circular clustering for color normalization of histological images. Fundam Inform 164(1):103–117

    Article  MathSciNet  Google Scholar 

  27. Salvi M, Michielli N, Molinari F (2020) Stain color adaptive normalization (SCAN) algorithm: separation and standardization of histological stains in digital pathology. Comput Methods Progr Biomed 105506

  28. Zanjani F G, Zinger S, Bejnordi B E, van der Laak J A, de With PH (2018) Stain normalization of histopathology images using generative adversarial networks. In: IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, p 2018

  29. Gavrilovic M, Azar J C, Lindblad J, Wählby C, Bengtsson E, Busch C, Carlbom I B (2013) Blind color decomposition of histological images. IEEE Trans Med Imaging 32(6):983– 994

    Article  Google Scholar 

  30. Gonzales R, Woods R, Eddins S (2002) Digital image processing. Prentice Hall, New Jersey

    Google Scholar 

  31. Reinhard E, Adhikhmin M, Gooch B, Shirley P (2001) Color transfer between images. IEEE Comput Graph Appl 21(5):34–41

    Article  Google Scholar 

  32. Ruifrok A C, Johnston D A, et al. (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23(4):291–299

    Google Scholar 

  33. Khan A M, Rajpoot N, Treanor D, Magee D (2014) A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans Biomed Eng 61 (6):1729–1738

    Article  Google Scholar 

  34. Macenko M, Niethammer M, Marron J S, Borland D, Woosley J T, Guan X, Schmitt C, Thomas NE (2009) A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 1107–1110

  35. Vahadane A, Peng T, Sethi A, Albarqouni S, Wang L, Baust M, Steiger K, Schlitter A M, Esposito I, Navab N (2016) Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans Med Imaging 35 (8):1962– 1971

    Article  Google Scholar 

  36. Bukenya F (2020) A hybrid approach for stain normalisation in digital histopathological images. Multimed Tools Appl 79(3):2339–2362

    Article  Google Scholar 

  37. Maji P, Mahapatra S (2019) Circular clustering in fuzzy approximation spaces for color normalization of histological images. IEEE Trans Med Imaging 39(5):1735–1745

    Article  Google Scholar 

  38. Li X, Plataniotis K N (2015) A complete color normalization approach to histopathology images using color cues computed from saturation-weighted statistics. IEEE Trans Biomed Eng 62(7):1862–1873

    Article  Google Scholar 

  39. Athira M, Aswathy M, Rahman N (2016) A complete color normalization approach and classification of breast cancer cell 5(8):53–58

  40. Roy S, Lal S, Kini J R (2019) Novel color normalization method for hematoxylin & eosin stained histopathology images. IEEE Access 7:28982–28998

    Article  Google Scholar 

  41. Plataniotis K N, Venetsanopoulos A N (2013) Color image processing and applications. Springer Science & Business Media

  42. Dubey Y K, Mushrif M M (2016) Fcm clustering algorithms for segmentation of brain mr images. Adv Fuzzy Syst 36(2):413– 426

    MathSciNet  Google Scholar 

  43. Çetin M, Dokur Z, Ölmez T (2019) Fuzzy local information c-means algorithm for histopathological image segmentation. In: 2019 Scientific meeting on electrical-electronics & biomedical engineering and computer science (EBBT). IEEE, pp 1–6

  44. Hanbury A (2003) Circular statistics applied to colour images. In: 8th Computer vision winter workshop, vol 91(1–2). Citeseer, pp 53–71

  45. Tosta TA A, de Faria PR, Neves L A, do Nascimento M Z (2019) Color normalization of faded h&e-stained histological images using spectral matching. Comput Biol Med 111:103344

    Article  Google Scholar 

  46. Monga P V (2020) Information processing and algorithms laboratory. Accessed on 2020-04-10

  47. Spanhol F A, Oliveira L S, Petitjean C, Heutte L (2015) A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 63(7):1455–1462

    Article  Google Scholar 

  48. Kahya M A, Al-Hayani W, Algamal ZY (2017) Classification of breast cancer histopathology images based on adaptive sparse support vector machine. J Appl Math Bioinform 7(1):49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijh, S., Saraswat, M. & Kumar, S. A new complete color normalization method for H&E stained histopatholgical images. Appl Intell 51, 7735–7748 (2021). https://doi.org/10.1007/s10489-021-02231-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02231-7

Keywords