Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sets of mutually orthogonal Sudoku frequency squares

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We discuss sets of mutually orthogonal frequency Sudoku squares. In particular, we provide upper bounds for the maximum number of such mutually orthogonal squares. In addition, we provide constructions for sets of such squares. We also briefly discuss an extension of these ideas to sets of higher dimensional mutually orthogonal frequency hypercubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bailey R.A., Cameron P.J., Connelly R.: Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and Hamming codes. Am. Math. Mon. 115, 383–404 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bremigan R., Lorch J.: Mutually orthogonal rectangular gerechte designs. Linear Algebra Appl. 497, 44–61 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  3. Colbourn C.J., Dinitz J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Raton (2007).

  4. Dénes J., Keedwell A.D.: Latin Squares and Their Applications. Academic Press, New York (1974).

    MATH  Google Scholar 

  5. D’haeseleer J., Metsch K., Storme L., Van de Voorde G.: On the maximality of a set of mutually orthogonal Sudoku latin squares. Des. Codes Cryptogr. 84, 143–152 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  6. Laywine C.F., Mullen G.L.: Discrete Mathematics Using Latin Squares. Wiley, New York (1998).

    MATH  Google Scholar 

  7. Lidl R., Niederreiter H.: Finite Fields, Encyclopedia of Mathematics and Its Applications, 2nd edn. Cambridge University Press, Cambridge (1997).

    Google Scholar 

  8. Mullen G.L.: Polynomial representation of complete sets of frequency squares of prime power order. Discret. Math. 69, 79–84 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  9. Pederson R., Vis T.: Sets of mutually orthogonal Sudoku Latin Squares. Coll. Math. J. 40(3), 174–180 (2009).

    Article  MathSciNet  Google Scholar 

  10. Street A.P., Street D.J.: Combinatorics of Experimental Design. Oxford University Press, New York (1987).

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Ethier.

Additional information

Communicated by D. Ghinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ethier, J.T., Mullen, G.L. Sets of mutually orthogonal Sudoku frequency squares. Des. Codes Cryptogr. 87, 57–65 (2019). https://doi.org/10.1007/s10623-018-0487-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0487-0

Keywords

Mathematics Subject Classification