Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Effective prediction of bacterial type IV secreted effectors by combined features of both C-termini and N-termini

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Various bacterial pathogens can deliver their secreted substrates also called as effectors through type IV secretion systems (T4SSs) into host cells and cause diseases. Since T4SS secreted effectors (T4SEs) play important roles in pathogen-host interactions, identifying them is crucial to our understanding of the pathogenic mechanisms of T4SSs. A few computational methods using machine learning algorithms for T4SEs prediction have been developed by using features of C-terminal residues. However, recent studies have shown that targeting information can also be encoded in the N-terminal region of at least some T4SEs. In this study, we present an effective method for T4SEs prediction by novelly integrating both N-terminal and C-terminal sequence information. First, we collected a comprehensive dataset across multiple bacterial species of known T4SEs and non-T4SEs from literatures. Then, three types of distinctive features, namely amino acid composition, composition, transition and distribution and position-specific scoring matrices were calculated for 50 N-terminal and 100 C-terminal residues. After that, we employed information gain represent to rank the importance score of the 150 different position residues for T4SE secretion signaling. At last, 125 distinctive position residues were singled out for the prediction model to classify T4SEs and non-T4SEs. The support vector machine model yields a high receiver operating curve of 0.916 in the fivefold cross-validation and an accuracy of 85.29% for the independent test set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Desvaux M, Hebraud M, Talon R, Henderson IR (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17:139–145

    Article  CAS  Google Scholar 

  2. Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion system. Microbiol Mol Biol Rev 73:775–808

    Article  CAS  Google Scholar 

  3. Backert S, Meyer TF (2006) Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9:207–217

    Article  CAS  Google Scholar 

  4. Ding Z, Atmakuri K, Christie PJ (2003) The outs and ins of bacterial type IV secretion substrates. Trends Microbiol 11:527–535

    Article  CAS  Google Scholar 

  5. Cambronne ED, Roy CR (2006) Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic 7:929–939

    Article  CAS  Google Scholar 

  6. Chandran V et al (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462:1011–1015

    Article  CAS  Google Scholar 

  7. Fronzes R et al (2009) Structure of a type IV secretion system core complex. Science 323:266–268

    Article  CAS  Google Scholar 

  8. Ward DV, Zambryski PC (2001) The six functions of Agrobacterium VirE2. Proc Natl Acad Sci USA 98:385–386

    Article  CAS  Google Scholar 

  9. Schrammeijer B, den Dulk-Ras A, Vergunst AC, Jurado Jácome E, Hooykaas PJ (2003) Analysis of Vir protein translocation from Agrobacterium tumefaciens using saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31:860–868

    Article  CAS  Google Scholar 

  10. Schröder G, Krause S, Zechner EL, Traxler B, Yeo HJ, Lurz R, Waksman G, Lanka E (2002) TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates? J Bacteriol 184:2767–2779

    Article  Google Scholar 

  11. Coers J, Kagan JC, Matthews M, Nagai H, Zuckman DM, Roy CR (2000) Dentification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol Microbiol 38:719–736

    Article  CAS  Google Scholar 

  12. Hofreuter D, Odenbreit S, Püls J, Schwan D, Haas R (2000) Genetic competence in Helicobacter pylori: mechanisms and biological implications. Res Microbiol 151:487–491

    Article  CAS  Google Scholar 

  13. Zou L, Nan C, Hu F (2013) Accurate prediction of bacterial type IV secreted effectors using amino acid composition and PSSM profiles. Bioinformatics 29:3135–3142

    Article  CAS  Google Scholar 

  14. Wang Y, Wei X, Bao H, Liu SL (2014) Prediction of bacterial type IV secreted effectors by C-terminal features. BMC Genomics 15:1–14

    Article  Google Scholar 

  15. An Y, Wang J, Li C et al (2016) Comprehensive assessment and performance improvement of effector protein predictors for bacterial secretion systems III, IV and VI. Brief Bioinform 100:1–14

    Google Scholar 

  16. Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CM, Regensburg-Tuïnk TJ, Hooykaas PJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982

    Article  CAS  Google Scholar 

  17. Simone M, McCullen CA, Stahl LE, Binns AN (2001) The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol 41:1283–1293

    Article  CAS  Google Scholar 

  18. Vergunst AC, van Lier MC, den Dulk-Ras A, Stüve TA, Ouwehand A, Hooykaas PJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102:832–837

    Article  CAS  Google Scholar 

  19. Schulein R, Guye P, Rhomberg TA, Schmid MC, Schröder G, Vergunst AC, Carena I, Dehio C (2005) A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci USA 102:856–861

    Article  CAS  Google Scholar 

  20. Hohlfeld S, Pattis I, Püls J, Plano GV, Haas R, Fischer W (2006) A C-terminal translocation signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein. Mol Microbiol 59:1624–1637

    Article  CAS  Google Scholar 

  21. Myeni S, Child R, Ng TW et al (2013) Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog 9:e1003556

    Article  CAS  Google Scholar 

  22. Marchesini MI, Herrmann CK, Salcedo SP et al (2011) In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system. Cell Microbiol 13:1261–1274

    Article  CAS  Google Scholar 

  23. Ke Y, Wang Y, Li W, Chen Z (2015) Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol 5:72

    Article  Google Scholar 

  24. Huang Y, Niu B, Gao Y et al (2010) CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682

    Article  CAS  Google Scholar 

  25. An Y, Wang J, Li C, Revote J, Zhang Y, Naderer T, Hayashida M, Akutsu T, Webb GI, Lithgow T, Song J (2017) SecretEPDB: a comprehensive web-based resource for secreted effector proteins of the bacterial types III, IV and VI secretion systems. Sci Rep 7:41031

    Article  CAS  Google Scholar 

  26. O’Shea JP, Chou MF, Quader SA et al (2013) pLogo: a probabilistic approach to visualizing sequence motifs. Nat Methods 10:1211–1212

    Article  Google Scholar 

  27. Hu YY, Guo YZ, Shi YN, Li ML, Pu XM (2015) A consensus subunit-specific model for annotation of substrate specificity for ABC transporters. RSC Adv 5:42009–42019

    Article  CAS  Google Scholar 

  28. Lin HH, Han LY, Cai CZ et al (2006) Prediction of transporter family from protein sequence by support vector machine approach. Proteins 62:218–231

    Article  CAS  Google Scholar 

  29. Cai CZ, Han LY, Ji ZL et al (2003) SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 31:3692–3697

    Article  CAS  Google Scholar 

  30. Berg BAVD, Reinders MJ, Roubos JA et al (2014) SPiCE: a web-based tool for sequence-based protein classification and exploration. BMC Bioinform 15:1–10

    Google Scholar 

  31. Ou YY, Chen SA, Gromiha MM (2010) Classification of transporters using efficient radial basis function networks with position-specific scoring matrices and biochemical properties. Proteins 78:1789–1797

    CAS  Google Scholar 

  32. Shu-An C, Yu-Yen O, Tzong-Yi L et al (2011) Prediction of transporter targets using efficient RBF networks with PSSM profiles and biochemical properties. Bioinformatics 27:2062–2067

    Article  Google Scholar 

  33. Mishra NK, Chang J, Zhao PX (2014) Prediction of membrane transport proteins and their substrate specificities using primary sequence information. PLoS ONE 9:e100278-e100278

    Google Scholar 

  34. Ding S, Yan S, Qi S et al (2014) A protein structural classes prediction method based on PSI-BLAST profile. J Theor Biol 353:19–23

    Article  CAS  Google Scholar 

  35. Zahiri J, Yaghoubi O, Mohammad-Noori M et al (2013) Ppievo : protein–protein interaction prediction from pssm based evolutionary information. Genomics 102:237–242

    Article  CAS  Google Scholar 

  36. Shi YN, Guo YZ, Hu YY, Li ML (2015) Position-specific prediction of methylation sites from sequence conservation based on information theory. Sci Rep 5:559–567

    Google Scholar 

  37. Chen K, Kurgan LA, Ruan J (2007) Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs. BMC Struct Biol 7:1–13

    Article  CAS  Google Scholar 

  38. Yu L, Liu H (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution. In ICML 3:856–863

    Google Scholar 

  39. Hua S, Sun Z (2001) A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 308:397–407

    Article  CAS  Google Scholar 

  40. Ding CH, Dubchak I (2001) Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17:349–358

    Article  CAS  Google Scholar 

  41. Rashid M, Ramasamy S, Raghava GP (2010) A simple approach for predicting protein-protein interactions. Curr Protein Pept Sci 11:589–600

    Article  CAS  Google Scholar 

  42. Chang CC, Lin CJ (2007) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 27:389–396

    Google Scholar 

  43. De GJ, Tsirigotaki A, Orfanoudaki G et al (2016) Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 1:16107

    Article  Google Scholar 

  44. Zechner EL, Lang S, Schildbach JF (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci 367:1073–1087

    Article  CAS  Google Scholar 

  45. Nagai H, Cambronne ED, Kagan JC et al (2005) A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci USA 102:826–831

    Article  CAS  Google Scholar 

  46. Capra JA, Singh M (2007) Predicting functionally important residues from sequence conservation. Bioinformatics 23:1875–1882

    Article  CAS  Google Scholar 

  47. Akeda Y, Okayama K, Kimura T et al (2009) Identification and characterization of a type III secretion-associated chaperone in the type III secretion system 1 of Vibrio parahaemolyticus. FEMS Microbiol Lett 296:18–25

    Article  CAS  Google Scholar 

  48. Anderson DM, Fouts DE, Collmer A, Schneewind O (1999) Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNAtargeting signals. Proc Natl Acad Sci USA 96:12839–12843

    Article  CAS  Google Scholar 

  49. Anderson DM, Schneewind O (1997) A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278:1140–1143

    Article  CAS  Google Scholar 

  50. Christensen JE, Pacheco SA, Konkel ME (2009) Identification of a Campylobacter jejuni-secreted protein required for maximal invasion of host cells. Mol Microbiol 73:650–662

    Article  CAS  Google Scholar 

  51. Ramamurthi KS, Schneewind O (2002) Yersinia enterocolitica type III secretion: mutational analysis of the yopQ secretion signal. J Bacteriol 184:3321–3328

    Article  CAS  Google Scholar 

  52. Ramamurthi KS, Schneewind O (2003) Yersinia yopQ mRNA encodes a bipartite type III secretion signal in the first 15 codons. Mol Microbiol 50:1189–1198

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (Nos. 21675114, 21573151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhi Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 279 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, Y., Pu, X. et al. Effective prediction of bacterial type IV secreted effectors by combined features of both C-termini and N-termini. J Comput Aided Mol Des 31, 1029–1038 (2017). https://doi.org/10.1007/s10822-017-0080-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0080-z

Keywords