Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dynamic Analog/RF Alternate Test Strategies Based on On-chip Learning

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Analog/RF alternate test schemes have been extensively studied in the past decade with the goal of replacing time-consuming and expensive specification tests with low-cost alternate measurements. A common approach in analog/RF alternate test is to build non-linear regression models to map the specification tests to alternate measurements, or to learn a pass/fail separation boundary directly in the space of alternate measurements. Among various challenges that have been discussed in alternate test, the model stationarity is a major bottle-neck that prevents test engineers from deploying it in long-term applications. In this work, we show that alternate test strategies can be implemented on-chip using analog/RF Built-In Self-Test (BIST) circuitry. Moreover, model refinement and dynamic adaptation can be achieved based on an automatic on-chip learning structure. Effectiveness of the proposed approach is demonstrated using experimental results from an RF Low Noise Amplifier (LNA) and its BIST implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Akbay S, Halder A, Chatterjee A, Keezer D (2004) Low-cost test of embedded RF/analog/mixed-signal circuits in SOPs. IEEE Trans Adv Packag 27(2):352–363

    Article  Google Scholar 

  2. Andraud M, Stratigopoulos HG, Simeu E (2016) One-shot non-intrusive calibration against process variations for analog/RF circuits. IEEE Trans Circuits Syst Regul Pap 63(11):2022–2035

    Article  Google Scholar 

  3. Ayari H, Azais F, Bernard S, Comte M, Kerzerho V, Potin O, Renovell M (2012) Making predictive analog/RF alternate test strategy independent of training set size. In: Proc. IEEE International Test Conference. Paper 10.1

  4. Biswas S, Blanton RD (2008) Test compaction for mixed-signal circuits using pass-fail test data. In: IEEE VLSI Test Symposium, pp 299–308

  5. Brockman JB, Director SW (1989) Predictive subset testing: Optimizing IC parametric performance testing for quality, cost, and yield. IEEE Trans Semicond Manuf 2(3):104–113

    Article  Google Scholar 

  6. Cimino M, Lapuyade H, Matos MD, Taris T, Deval Y, Begueret J (2006) A robust 130nm-CMOS built-in current sensor dedicated to RF applications. In: IEEE European Test Symposium, pp 151–158

  7. da Silva JM (2006) A low-power oscillation based LNA BIST scheme. In: International Conference on Design and Test of Integrated Systems in Nanoscale Technology, pp 268–272

  8. Dermentzoglou L, Arapoyanni A, Tsiatouhas Y (2010) A built-in test circuit for RF differential low noise amplifiers. IEEE Trans Circuits Syst Regul Pap 57(7):1549–1558

    Article  MathSciNet  Google Scholar 

  9. Han D, Kim BS, Chatterjee A (2010) DSP-Driven self-tuning of RF circuits for process-induced performance variability. IEEE Transactions on VLSI Systems 18(2):305–314

    Article  Google Scholar 

  10. Huang K, Kupp N, Carulli J, Makris Y (2013) Handling discontinuous effects in modeling spatial correlation of wafer-level analog/RF tests. In: Design, Automation and Test in Europe Conference (DATE), pp 553–558

  11. Huang K, Stratigopoulos HG, Abdallah L, Mir S, Bounceur A (2013) Multivariate statistical techniques for analog parametric test metrics estimation. In: IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS), pp 6–11

  12. Huang K, Kupp N, Xanthopoulos C, Carulli J, Makris Y (2015) Low-cost analog/RF IC testing through combined intra- and inter-die correlation models. IEEE Des Test 32(1):53–60

    Google Scholar 

  13. Huang K, Wen J, Willmore J (2016) Test suite-based analog/RF test time reduction using canonical correlation. IEEE Trans Comput Aided Des Integr Circuits Syst 35(12):2143–2147

    Article  Google Scholar 

  14. Huss SD, Gyurcsik RS (1991) Optimal ordering of analog integrated circuit tests to minimize test time. In: ACM/IEEE Design Automation Conference, pp 494–499

  15. Kupp N, Huang K, Carulli J, Makris Y (2012) Spatial correlation modeling for probe test cost reduction. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD)

  16. Liu F (2007) A general framework for spatial correlation modeling in VLSI design. In: Design Automation Conference, pp 817– 822

  17. Maeda Y, Wakamura M (2005) Simultaneous perturbation learning rule for recurrent neural networks and its fpga implementation. IEEE Trans Neural Netw 16(6):1664–1672

    Article  Google Scholar 

  18. Milor L, Sangiovanni-Vincentelli AL (1994) Minimizing production test time to detect faults in analog circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 13(6):796–813

    Article  Google Scholar 

  19. Spall J (1998) Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans Aerosp Electron Syst 34(3):817–823

    Article  Google Scholar 

  20. Stratigopoulos HG, Makris Y (2008) Error moderation in low-cost machine-learning-based analog/RF testing. IEEE Trans Comput Aided Des Integr Circuits Syst 27(2):339–351

    Article  Google Scholar 

  21. Stratigopoulos HG, Mir S, Bounceur A (2009) Evaluation of analog/RF test measurements at the design stage. IEEE Trans Comput Aided Des Integr Circuits Syst 28(4):582–590

    Article  Google Scholar 

  22. Stratigopoulos HG, Drineas P, Slamani M, Makris Y (2010) RF Specification test compaction using learning machines. IEEE Trans Very Large Scale Integr VLSI Syst 18(6):998–1002

    Article  Google Scholar 

  23. Valdes-Garcia A, Silva-Martinez J, Sanchez-Sinencio E (2006) On-chip testing techniques for rf wireless transceivers. IEEE Des Test Comput 23(4):268–277

    Article  Google Scholar 

  24. Variyam PN, Cherubal S, Chatterjee A (2002) Prediction of analog performance parameters using fast transient testing. IEEE Trans Comput Aided Des Integr Circuits Syst 21(3):349–361

    Article  Google Scholar 

  25. Volanis G, Maliuk D, Lu Y, Subramani K, Antonopoulos A, Makris Y (2016) On-die learning-based self-calibration of analog/RF ICs. In: IEEE VLSI Test Symposium, pp 1–6

  26. Voorakaranam R, Akbay SS, Bhattacharya S, Cherubal S, Chatterjee A (2007) Signature testing of analog and RF circuits: Algorithms and methodology. IEEE Trans Circuits Syst I 54(5):1018–1031

    Article  Google Scholar 

  27. Zhang W, Li X, Liu F, Acar E, Rutenbar R, Blanton R (2011) Virtual probe: a statistical framework for low-cost silicon characterization of nanoscale integrated circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 30(12):1814–1827

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Huang.

Additional information

Responsible Editor: M. Barragan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kansara, P., Reddy, S.B., Abdallah, L. et al. Dynamic Analog/RF Alternate Test Strategies Based on On-chip Learning. J Electron Test 34, 337–349 (2018). https://doi.org/10.1007/s10836-018-5724-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-018-5724-y

Keywords