Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A systematic review of data-driven approaches to fault diagnosis and early warning

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

As an important stage of life cycle management, machinery PHM (prognostics and health management), an emerging subject in mechanical engineering, has seen a huge amount of research. Here the authors present a comprehensive overview that details previous and current efforts in PHM from an industrial big data perspective. The authors first analyze the historical development of industrial big data and its distinction from big data of other domains and summarize the sources, types, and processing modes of industrial big data. Then, the authors provide an overview of common representation and fusion (data pre-processing) methods of industrial big data. Next, the authors comprehensively review common PHM methods in the data-driven context, focusing on the application of deep learning. Finally, two industrial cases from our previous studies are included in this paper to demonstrate how the PHM technique may facilitate the manufacturing industry. Furthermore, a visual bibliography is developed for displaying current results of PHM in an appropriate theme. The bibliography is open source at “https://mango-hund.github.io/”. The authors believe that future research endeavors will require an understanding of this previous work, and our efforts in this paper will make it possible to customize and integrate PHM systems quickly for a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938.

    Article  Google Scholar 

  • Agogino, A., & Goebel, K. (2007). Ucberkeley. Retrieved from https://ti.arc.nasa.gov/m/project/prognostic-repository/mill.zip.

  • Andrienko, G., Andrienko, N., Drucker, S., Fekete, J.-D., Fisher, D., Idreos, S., Kraska, T., Li, G., Ma, K.-L., Mackinlay, J. et al. (2020). Big data visualization and analytics: Future research challenges and emerging applications. In BigVis 2020-3rd International Workshop on Big Data Visual Exploration and Analytics.

  • Appana, D. K., Prosvirin, A., & Kim, J.-M. (2018). Reliable fault diagnosis of bearings with varying rotational speeds using envelope spectrum and convolution neural networks. Soft Computing, 22(20), 6719–6729.

    Article  Google Scholar 

  • Belhadi, A., Zkik, K., Cherrafi, A., Sha’ri, M. Y., et al. (2019). Understanding big data analytics for manufacturing processes: insights from literature review and multiple case studies. Computers & Industrial Engineering, 137, 106099.

    Article  Google Scholar 

  • Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers Inc.

  • Bossio, J. M., Bossio, G. R., & De Angelo, C. H. (2017). Fault diagnosis in induction motors using self-organizing neural networks and quantization error. In 2017 XVII Workshop on Information Processing and Control (RPIC) (pp. 1–6). IEEE.

  • CaseWestern Reserve University. (2021b). Casewestern. Retrieved from https://csegroups.case.edu/bearingdatacenter/.

  • Chen, H., Jiang, B., Ding, S. X., & Huang, B. (2020). Data-driven fault diagnosis for traction systems in high-speed trains: A survey, challenges, and perspectives. IEEE Transactions on Intelligent Transportation Systems.

  • Chen, R., Huang, X., Yang, L., Xiangyang, X., Zhang, X., & Zhang, Y. (2019a). Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform. Computers in Industry, 106, 48–59.

  • Chen, J., Jing, H., Chang, Y., & Liu, Q. (2019b). Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process. Reliability Engineering & System Safety, 185, 372–382.

  • Chen, Y., Jin, Y., & Jiri, G. (2018). Predicting tool wear with multi-sensor data using deep belief networks. The International Journal of Advanced Manufacturing Technology, 99(5), 1917–1926.

    Article  Google Scholar 

  • Chen, T. L., & Que, P. W. (2004). Research on invalidation of ds evidential theory in data fusion. Journal of Transducer Technology, 23, 25–27.

    Google Scholar 

  • Cho, S., Choi, M., Gao, Z., & Moan, T. (2021). Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on kalman filters and artificial neural networks. Renewable Energy, 169, 1–13.

    Article  Google Scholar 

  • Cincinnati University. (2021a). Ims. Retrieved from https://best.berkeley.edu/.

  • Daugherty, P., Banerjee, P., Negm, W., & Alter, A. E. (2015). Driving unconventional growth through the industrial internet of things. Accenture Technology.

  • Dean, J., & Ghemawat, S. (2008). Mapreduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.

    Article  Google Scholar 

  • Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., et al. (2012). Large scale distributed deep networks. Advances in Neural Information Processing Systems, 25, 1223–1231.

    Google Scholar 

  • Demidova, G., Rassõlkin, A., Vaimann, T., Kallaste, A., Zakis, J., & Suzdalenko, A. (2021). An overview of fuzzy logic approaches for fault diagnosis in energy conversion devices. In 2021 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED) (pp. 1–7). IEEE.

  • Di Liu, Wang, S., & Cui, X. (2021a). An artificial neural network supported wiener process based reliability estimation method considering individual difference and measurement error. Reliability Engineering & System Safety, 108162.

  • Dimaio, F., Scapinello, O., Zio, E., Ciarapica, C., Cincotta, S., Crivellari, A., et al. (2021). Accounting for safety barriers degradation in the risk assessment of oil and gas systems by multistate bayesian networks. Reliability Engineering & System Safety, 216, 107943.

    Article  Google Scholar 

  • Dong, S., Zhang, Z., Wen, G., & Wen, G. (2017). Design and application of unsupervised convolutional neural networks integrated with deep belief networks for mechanical fault diagnosis. In 2017 Prognostics and system health management conference (PHM-Harbin) (pp. 1–7). IEEE.

  • Duan, C., Zhu, M., Wang, K., & Zhou, W. (2021). Reliability analysis of intelligent manufacturing systems based on improved fmea combined with machine learning. Researchsquare.

  • El Madbouly, E. E., Abdalla, A. E., & El Banby, G. M. (2009). Fuzzy adaptive kalman filter for multi-sensor system. In 2009 International Conference on Networking and Media Convergence (pp. 141–145). IEEE.

  • Electronics Standardization Institute China. (2017). White book on industrial big data. Retrieved from http://www.cesi.cn/201703/2250.html.

  • Ellefsen, A. L., Bjørlykhaug, E., Æsøy, V., Ushakov, S., & Zhang, H. (2019). Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture. Reliability Engineering & System Safety, 183, 240–251.

    Article  Google Scholar 

  • Farsi, M. A., & Zio, E. (2019). Industry 4.0: Some challenges and opportunities for reliability engineering. International Journal of Reliability, Risk and Safety: Theory and Application, 2(1), 23–34.

    Google Scholar 

  • France University of Besanson. (2021). Besanson. Retrieved from https://www.femto-st.fr/en/.

  • Frasconi, P., Gori, M., & Soda, G. (1992). Local feedback multilayered networks. Neural Computation, 4(1), 120–130.

    Article  Google Scholar 

  • General Electric Company. (2015). Predix: The industrial iot application platform. Retrieved from https://www.ge.com/digital/sites/default/files/download_assets/Predix-The-Industrial-Internet-Platform-Brief.pdf.

  • Germany, S. (2016). Mindsphere: An industrial iot as a service solution to build on. Retrieved from https://siemens.mindsphere.io/en/about/for-users.

  • Gong, Y., Xiaoyan, S., Qian, H., & Yang, N. (2018). Research on fault diagnosis methods for the reactor coolant system of nuclear power plant based on ds evidence theory. Annals of Nuclear Energy, 112, 395–399.

    Article  Google Scholar 

  • Guibing, G. A. O., Dengming, Z. H. O. U., Hao, T. A. N. G., & Xin, H. U. (2021). An intelligent health diagnosis and maintenance decision-making approach in smart manufacturing. Reliability Engineering & System Safety, 216, 107965.

    Article  Google Scholar 

  • Guo, X., Chen, L., & Shen, C. (2016). Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement, 93, 490–502.

    Article  Google Scholar 

  • Han, H., Cui, X., Fan, Y., & Qing, H. (2019). Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault indicative features. Applied Thermal Engineering, 154, 540–547.

    Article  Google Scholar 

  • Han, T., Liu, C., Rui, W., & Jiang, D. (2021). Deep transfer learning with limited data for machinery fault diagnosis. Applied Soft Computing, 103, 107150.

    Article  Google Scholar 

  • He, J., Yang, S., & Gan, C. (2017). Unsupervised fault diagnosis of a gear transmission chain using a deep belief network. Sensors, 17(7), 1564.

    Article  Google Scholar 

  • Hinton, G.E. (2012). A practical guide to training restricted boltzmann machines. In Neural networks: Tricks of the trade (pp. 599–619). Springer.

  • Hiraman, B. R. et al. (2018). A study of apache kafka in big data stream processing. In 2018 International Conference on Information, Communication, Engineering and Technology (ICICET), (pp. 1–3). IEEE.

  • Iannace, G., Ciaburro, G., & Trematerra, A. (2019). Fault diagnosis for UAV blades using artificial neural network. Robotics, 8(3), 59.

    Article  Google Scholar 

  • Islam, M. M. M., & Kim, J.-M. (2019). Automated bearing fault diagnosis scheme using 2d representation of wavelet packet transform and deep convolutional neural network. Computers in Industry, 106, 142–153.

    Article  Google Scholar 

  • Jiang, Y., & Yin, S. (2017). Recursive total principle component regression based fault detection and its application to vehicular cyber-physical systems. IEEE Transactions on Industrial Informatics, 14(4), 1415–1423.

    Article  Google Scholar 

  • Ji, C., Xing, S., Qin, Z., & Nawaz, A. (2022). Probability analysis of construction risk based on noisy-or gate bayesian networks. Reliability Engineering & System Safety, 217, 107974.

    Article  Google Scholar 

  • Ji, X., Ren, Y., Tang, H., Shi, C., & Xiang, J. (2020). An intelligent fault diagnosis approach based on Dempster-Shafer theory for hydraulic valves. Measurement, 165, 108129.

    Article  Google Scholar 

  • Jung, D. (2020). Residual generation using physically-based grey-box recurrent neural networks for engine fault diagnosis. arXiv preprint arXiv:2008.04644.

  • Keim, D., Huamin, Q., & Ma, K.-L. (2013). Big-data visualization. IEEE Computer Graphics and Applications, 33(4), 20–21.

    Article  Google Scholar 

  • Khorasgani, H., Farahat, A., Ristovski, K., Gupta, C., & Biswas, G. (2018). A framework for unifying model-based and data-driven fault diagnosis. In PHM society conference (Vol. 10).

  • Kim, J., Zhao, X., Shah, A. A., & Kang, H. G. (2021). System risk quantification and decision making support using functional modeling and dynamic bayesian network. Reliability Engineering and System Safety, 215, 107880.

    Article  Google Scholar 

  • Klinedinst, D., & King, C. (2016). On board diagnostics: Risks and vulnerabilities of the connected vehicle. CERT Coordination Center, Tech: Rep.

  • Lee, J. (2020). Industrial AI: Applications with sustainable performance. Springer.

    Book  Google Scholar 

  • Lee, J., Ardakani, H. D., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. Procedia Cirp, 38, 3–7.

    Article  Google Scholar 

  • Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.

    Article  Google Scholar 

  • Lee, J., Fangji, W., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems-reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1–2), 314–334.

    Article  Google Scholar 

  • Lee, Y. W., Strong, D. M., Kahn, B. K., & Wang, R. Y. (2002). Aimq: A methodology for information quality assessment. Information & Management, 40(2), 133–146.

    Article  Google Scholar 

  • Lessmeier, C. K. (2021). Kat-datacenter. Retrieved from https://mb.uni-paderborn.de/kat/.

  • Li, M., & Zhou, Q. (2017). Industrial big data visualization: A case study using flight data recordings to discover the factors affecting the airplane fuel efficiency. In 2017 IEEE Trustcom/BigDataSE/ICESS (pp. 853–858). IEEE.

  • Li, W., Huang, R., Li, J., Liao, Y., Chen, Z., He, G., et al. (2022). A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges. Mechanical Systems and Signal Processing, 167, 108487.

    Article  Google Scholar 

  • Li, Y., Jiang, W., Zhang, G., & Shu, L. (2021). Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data. Renewable Energy, 171, 103–115.

    Article  Google Scholar 

  • Liu, H., Zhou, J., Zheng, Y., Jiang, W., & Zhang, Y. (2018). Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders. ISA Transactions, 77, 167–178.

    Article  Google Scholar 

  • Liu, J., Zhang, Q., Li, X., Li, G., Liu, Z., Xie, Y., et al. (2021). Transfer learning-based strategies for fault diagnosis in building energy systems. Energy and Buildings, 250, 111256.

    Article  Google Scholar 

  • Lopez, M. A., Lobato, A. G. P., & Duarte, O. C. M. B. (2016). A performance comparison of open-source stream processing platforms. In 2016 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.

  • Luo, J., Huang, J., & Li, H. (2021). A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis. Journal of Intelligent Manufacturing, 32(2), 407–425.

    Article  Google Scholar 

  • Lv, K., Gao, C., Si, J., Feng, H., & Cao, W. (2020). Fault coil location of inter-turn short-circuit for direct-drive permanent magnet synchronous motor using knowledge graph. IET Electric Power Applications, 14(9), 1712–1721.

    Article  Google Scholar 

  • Malik, H., & Mishra, S. (2017). Artificial neural network and empirical mode decomposition based imbalance fault diagnosis of wind turbine using turbsim, fast and simulink. IET Renewable Power Generation, 11(6), 889–902.

    Article  Google Scholar 

  • Mangai, U. G., Samanta, S., Das, S., & Chowdhury, P. R. (2010). A survey of decision fusion and feature fusion strategies for pattern classification. IETE Technical Review, 27(4), 293–307.

    Article  Google Scholar 

  • Martínez, A., Sánchez, L., & Couso, I. (2013). Engine health monitoring for engine fleets using fuzzy radviz. In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1–8). IEEE.

  • Martínez López, K. (2021). Development of machine learning strategies for fault diagnosis in virtual plants (digital twin). Master’s thesis, Universitat Politècnica de Catalunya.

  • Ma, M., Sun, C., & Chen, X. (2017). Discriminative deep belief networks with ant colony optimization for health status assessment of machine. IEEE Transactions on Instrumentation and Measurement, 66(12), 3115–3125.

    Article  Google Scholar 

  • Md Amin, T., Khan, F., & Imtiaz, S. (2018). Dynamic availability assessment of safety critical systems using a dynamic bayesian network. Reliability Engineering & System Safety, 178, 108–117.

    Article  Google Scholar 

  • Merkisz, J., Bogus, P., & Grzeszczyk, R. (2001). Overview of engine misfire detection methods used in on board diagnostics. Journal of Kones, Combustion Engines, 8(1–2), 326–341.

    Google Scholar 

  • Miao, M., Yu, J., & Zhao, Z. (2021). A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions. Reliability Engineering & System Safety, 108259.

  • NASA. (1994). Nasa public lessons. Retrieved from https://llis.nasa.gov/lesson/845.

  • NASA USA. (2021). Pcoe datasets. Retrieved from https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.

  • Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., & Varnier, C. (2012). Pronostia: An experimental platform for bearings accelerated degradation tests. In IEEE International Conference on Prognostics and Health Management, PHM’12. (pp. 1–8). IEEE Catalog Number: CPF12PHM-CDR.

  • Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in cps-based production systems. Procedia Manufacturing, 11, 939–948.

    Article  Google Scholar 

  • Novikova, E., Bestuzhev, M., & Kotenko, I. (2019). Anomaly detection in the hvac system operation by a radviz based visualization-driven approach. In Computer Security (pp. 402–418). Springer.

  • O’Donovan, P., Leahy, K., Bruton, K., & O’Sullivan, D. T. J. (2015). An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities. Journal of Big Data, 2(1), 1–26.

    Article  Google Scholar 

  • Pandya, D. H., Upadhyay, S. H., & Harsha, S. P. (2014). Fault diagnosis of rolling element bearing by using multinomial logistic regression and wavelet packet transform. Soft Computing, 18(2), 255–266.

    Article  Google Scholar 

  • Panpan, X., Mei, H., Ren, L., & Chen, W. (2016). Vidx: Visual diagnostics of assembly line performance in smart factories. IEEE Transactions on Visualization and Computer Graphics, 23(1), 291–300.

    Google Scholar 

  • Patan, K. (2008). Artificial neural networks for the modelling and fault diagnosis of technical processes. Springer.

    Google Scholar 

  • Peng, J., Kimmig, A., Niu, Z., Wang, J., Liu, X., Wang, D., & Ovtcharova, J. (2022). Wind turbine failure prediction and health assessment based on adaptive maximum mean discrepancy. International Journal of Electrical Power & Energy Systems, 134, 107391.

    Article  Google Scholar 

  • Peng, X., Shijin, X., & Yin, H. (2007). Application of self-organizing competitive neural network in fault diagnosis of suck rod pumping system. Journal of Petroleum Science and Engineering, 58(1–2), 43–48.

    Google Scholar 

  • Peres, R. S., Jia, X., Lee, J., Sun, K., Colombo, A. W., & Barata, J. (2020). Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook. IEEE Access, 8, 220121–220139.

    Article  Google Scholar 

  • Przystałka, P., & Moczulski, W. (2015). Methodology of neural modelling in fault detection with the use of chaos engineering. Engineering Applications of Artificial Intelligence, 41, 25–40.

    Article  Google Scholar 

  • Qian, Q., Qin, Y., Wang, Y., & Liu, F. (2021). A new deep transfer learning network based on convolutional auto-encoder for mechanical fault diagnosis. Measurement, 178, 109352.

    Article  Google Scholar 

  • Qiao, M., Yan, S., Tang, X., & Chengkuan, X. (2020). Deep convolutional and LSTM recurrent neural networks for rolling bearing fault diagnosis under strong noises and variable loads. IEEE Access, 8, 66257–66269.

    Article  Google Scholar 

  • Qin, Y., Wang, X., & Zou, J. (2018). The optimized deep belief networks with improved logistic sigmoid units and their application in fault diagnosis for planetary gearboxes of wind turbines. IEEE Transactions on Industrial Electronics, 66(5), 3814–3824.

    Article  Google Scholar 

  • Rohan, A. (2022). Holistic fault detection and diagnosis system in imbalanced, scarce, multi-domain (ISMD) data setting for component-level prognostics and health management (phm). arXiv preprint arXiv:2204.02969.

  • Saxena, A., & Goebel, K. (2008). Nasa2. Retrieved from https://ti.arc.nasa.gov/m/project/prognostic-repository/CMAPSSData.zip.

  • Shahnazari, H. (2020). Fault diagnosis of nonlinear systems using recurrent neural networks. Chemical Engineering Research and Design, 153, 233–245.

    Article  Google Scholar 

  • Shao, H., Jiang, H., Wang, F., & Zhao, H. (2017). An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowledge-Based Systems, 119, 200–220.

    Article  Google Scholar 

  • Shlyannikov, V., Yarullin, R., Yakovlev, M., Giannella, V., & Citarella, R. (2021). Mixed-mode crack growth simulation in aviation engine compressor disk. Engineering Fracture Mechanics, 246, 107617.

    Article  Google Scholar 

  • Song, F., Zhang, Y., Lin, L., Zhao, M., & Zhong, S. (2021). Deep residual lstm with domain-invariance for remaining useful life prediction across domains. Reliability Engineering & System Safety, 216, 108012.

    Article  Google Scholar 

  • Stonebraker, M., Çetintemel, U., & Zdonik, S. (2005). The 8 requirements of real-time stream processing. ACM Sigmod Record, 34(4), 42–47.

    Article  Google Scholar 

  • Su, L., Wang, Z., Ji, Y., & Guo, X. (2020). A survey based on knowledge graph in fault diagnosis, analysis and prediction: key technologies and challenges. In 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE) (pp. 458–462). IEEE.

  • Su, W., & Bougiouklis, T. C. (2007). Data fusion algorithms in cluster-based wireless sensor networks using fuzzy logic theory. In Proceedings of the 11th WSEAS international conference on communications.

  • Tamilselvan, P., & Wang, P. (2013). Failure diagnosis using deep belief learning based health state classification. Reliability Engineering & System Safety, 115, 124–135.

    Article  Google Scholar 

  • University of Berkeley California. (2021). berkeley. Retrieved from https://best.berkeley.edu/.

  • Vachtsevanos, G. J., & Vachtsevanos, G. J. (2006). Intelligent fault diagnosis and prognosis for engineering systems (Vol. 456). Wiley.

    Book  Google Scholar 

  • Wang, J., Zhuang, J., Duan, L., & Cheng, W. (2016). A multi-scale convolution neural network for featureless fault diagnosis. In 2016 International Symposium on Flexible Automation (ISFA) (pp. 65–70). IEEE.

  • Wang, L., Hodges, J., Yu, D., & Fearing, R. S. (2021). Automatic modeling and fault diagnosis of car production lines based on first-principle qualitative mechanics and semantic web technology. Advanced Engineering Informatics, 49, 101248.

    Article  Google Scholar 

  • Wang, P., Yang, L. T., Li, J., Chen, J., & Hu, S. (2019). Data fusion in cyber-physical-social systems: State-of-the-art and perspectives. Information Fusion, 51, 42–57.

    Article  Google Scholar 

  • Wang, Z., Yao, L., Cai, Y., & Zhang, J. (2020). Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis. Renewable Energy, 155, 1312–1327.

    Article  Google Scholar 

  • Wei-Peng, L., & Yan, X.-F. (2019). Visual monitoring of industrial operation states based on kernel fisher vector and self-organizing map networks. International Journal of Control, Automation and Systems, 17(6), 1535–1546.

    Article  Google Scholar 

  • Wen, L., Li, X., Gao, L., & Zhang, Y. (2017). A new convolutional neural network-based data-driven fault diagnosis method. IEEE Transactions on Industrial Electronics, 65(7), 5990–5998.

    Article  Google Scholar 

  • Willner, D., Chang, C. B., & Dunn, K. P. (1976). Kalman filter algorithms for a multi-sensor system. In 1976 IEEE conference on decision and control including the 15th symposium on adaptive processes (pp. 570–574). IEEE.

  • Wumaier Tuerxun, X., Chang, G. H., Zhijie, J., & Huajian, Z. (2021). Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm. Ieee Access, 9, 69307–69315.

    Article  Google Scholar 

  • Xiaolei, Y., Zhao, Z., Zhang, X., Zhang, Q., Liu, Y., Sun, C., & Chen, X. (2021). Deep-learning-based open set fault diagnosis by extreme value theory. IEEE Transactions on Industrial Informatics, 18(1), 185–196.

    Google Scholar 

  • Xu, F., Fang, Z., Tang, R., Li, X., & Tsui, K. L. (2020). An unsupervised and enhanced deep belief network for bearing performance degradation assessment. Measurement, 162, 107902.

    Article  Google Scholar 

  • Xu, X., Cao, D., Zhou, Y., & Gao, J. (2020). Application of neural network algorithm in fault diagnosis of mechanical intelligence. Mechanical Systems and Signal Processing, 141, 106625.

    Article  Google Scholar 

  • Xu, Z., & Saleh, J. H. (2021). Machine learning for reliability engineering and safety applications: Review of current status and future opportunities. Reliability Engineering & System Safety, 107530.

  • Xu, Y.-H., Hong, W.-X., & Chen, M.-M. (2009). Visualized fault diagnosis method based on radviz and its optimization. Application Research of Computers, 3.

  • Xudong, S., Hongguang, L., Ruowen, W., & Meng, X. (2015). Modeling and simulation of aviation engine ignition spark frequency disorder. The Open Electrical & Electronic Engineering Journal, 9(1).

  • Yang, N., Zhang, G., & Wang, J. (2020). Research on knowledge graph and bayesian network in fault diagnosis of steam turbine. In 2020 Global Reliability and Prognostics and Health Management (PHM-Shanghai) (pp. 1–6). IEEE.

  • Yang, X., Li, Z., Wang, S., Li, W., Sarkodie-Gyan, T., & Feng, S. (2021). A hybrid deep-learning model for fault diagnosis of rolling bearings. Measurement, 169, 108502.

    Article  Google Scholar 

  • Yang, Y., Zhan, D.-C., Fan, Y., Jiang, Y., & Zhou, Z.-H. (2017). Deep learning for fixed model reuse. In Thirty-First AAAI Conference on Artificial Intelligence.

  • Ye, S., Wang, J., Zhang, G., Su, H., Yao, Q., & Huang, J. (2015). Simulation and fault diagnosis for aviation engine starting system based on simulink. In 2015 Chinese Automation Congress (CAC) (pp. 1834–1839). IEEE.

  • Yun, F., Feng, Z., Baofeng, L., & Yongfeng, C. (2019). Research on intelligent fault diagnosis of power acquisition based on knowledge graph. In 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE) (pp. 1737–1740). IEEE.

  • Zhang, H., Chen, P., & Wang, Q. (2018). Fault diagnosis method based on EEMD and multi-class logistic regression. In 2018 3rd International Conference on Smart City and Systems Engineering (ICSCSE) (pp. 859–863). IEEE.

  • Zhang, S., Zhang, Y., Yang, Y., Cheng, W., Zhao, H., & Li, Y. (2021a). Knowledge graph construction for fault diagnosis of aircraft environmental control system. In 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing) (pp. 1–5). IEEE.

  • Zhang, Y., & Ji, Q. (2006). Active and dynamic information fusion for multisensor systems with dynamic bayesian networks. IEEE Transactions on Systems, Man and Cybernetics Part B (Cybernetics), 36(2), 467–472.

    Article  Google Scholar 

  • Zhang, Y., Zhou, T., Huang, X., Cao, L., & Zhou, Q. (2021). Fault diagnosis of rotating machinery based on recurrent neural networks. Measurement, 171, 108774.

    Article  Google Scholar 

  • Zhong, F., Shi, T., & He, T. (2005). Fault diagnosis of motor bearing using self-organizing maps. In 2005 International Conference on Electrical Machines and Systems (Vol. 3, pp. 2411–2414). IEEE.

  • Zhong-Xu, H., Wang, Y., Ge, M.-F., & Liu, J. (2019). Data-driven fault diagnosis method based on compressed sensing and improved multiscale network. IEEE Transactions on Industrial Electronics, 67(4), 3216–3225.

    Google Scholar 

  • Zhou, J., Wang, T., & Deng, J. (2021). Corpus construction and entity recognition for the field of industrial robot fault diagnosis. In 2021 13th International Conference on Machine Learning and Computing (pp. 410–416).

  • Zhou, X., Pan, L., Zheng, Z., Tolliver, D., & Keramati, A. (2020). Accident prediction accuracy assessment for highway-rail grade crossings using random forest algorithm compared with decision tree. Reliability Engineering & System Safety, 200, 106931.

    Article  Google Scholar 

Download references

Acknowledgements

The research is partially supported by National Key R &D Program of China (No. 2017YFE0101400), National Natural Science Foundation of China (No. 61802278), China Scholarship Council, and EU H2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement (754462). The research is also supported by the German KIT- internal research project Wertstromkinematik (Value Stream Kinematics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Niu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jieyang, P., Kimmig, A., Dongkun, W. et al. A systematic review of data-driven approaches to fault diagnosis and early warning. J Intell Manuf 34, 3277–3304 (2023). https://doi.org/10.1007/s10845-022-02020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-022-02020-0

Keywords