Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Recent progress on cast magnesium alloy and components

  • Lightweight Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The application of cast magnesium alloy components is increasing in recent years, especially in the new energy automotive and transportation industries. As component application scenarios become increasingly complex, the performance of cast magnesium alloys needs to be further enhanced. Significant progress has been made in casting technology and the design of cast magnesium alloys. In addition, some new application of cast magnesium alloy components is also developed recently. This paper provides an overview of the current status of high-performance cast magnesium alloys, including the alloy design, casting techniques, control of casting defects, and applications of cast magnesium alloys. Based on the issues and challenges identified here, some future research directions on cast magnesium alloys are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data and code availability

Not applicable.

References

  1. Niranjan CA, Raghavendra T, Rao MP et al (2023) Magnesium alloys as extremely promising alternatives for temporary orthopedic implants—a review. J Magnes Alloys 11:2688–2718. https://doi.org/10.1016/j.jma.2023.08.002

    Article  CAS  Google Scholar 

  2. Lei Y, Wang Z, Kang G (2022) Experimental investigation on uniaxial cyclic plasticity of cast AZ91 magnesium alloy. J Magnes Alloys 11:3255–3271. https://doi.org/10.1016/j.jma.2021.12.001

    Article  CAS  Google Scholar 

  3. Lee S, Park Y, Go J, et al (2023) Elucidating the evolution of long-period stacking ordered phase and its effect on deformation behavior in the as-cast Mg-6Gd-1Zn-0.6Zr alloy 11:2801–2810. J Magnes Alloys. https://doi.org/10.1016/j.jma.2023.07.012

  4. Ouyang S, Yang G, Qin H, Wang C, Luo S, Jie W (2022) Effect of the precipitation state on high temperature tensile and creep behaviors of Mg-15Gd alloy. J Magnes Alloys 10:3459–3469. https://doi.org/10.1016/j.jma.2021.06.016

    Article  CAS  Google Scholar 

  5. Zhou W, Li Z, Li D et al (2022) Comparative study of corrosion behaviors of die cast LA42 and AZ91 alloys. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.10.022

    Article  Google Scholar 

  6. Zhou T, Li Y, Guo F, Li Q, Jia Z, Liu D (2023) Achieving high strength-ductility synergy in Mg-6Sn-3Zn-0.3Zr (wt.%) alloy via a combination of casting, pre-treatment and hot extrusion. J Magnes Alloys. https://doi.org/10.1016/j.jma.2023.08.022

  7. Yu Z, Xu X, Shi K et al (2023) Development and characteristics of a low rare-earth containing magnesium alloy with high strength-ductility synergy. J Magnes Alloys 11:1629–1642. https://doi.org/10.1016/j.jma.2022.01.005

    Article  CAS  Google Scholar 

  8. Yang Y, Xiong X, Chen J, Peng X, Chen D, Pan F (2023) Research advances of magnesium and magnesium alloys worldwide in 2022. J Magnes Alloys 11:2611–2654. https://doi.org/10.1016/j.jma.2023.07.011

    Article  CAS  Google Scholar 

  9. Song J, Chen J, Xiong X, Peng X, Chen D, Pan F (2022) Research advances of magnesium and magnesium alloys worldwide in 2021. J Magnes Alloys 10:863–898. https://doi.org/10.1016/j.jma.2022.04.001

    Article  CAS  Google Scholar 

  10. Bai Y, Ye B, Wang L et al (2021) A novel die-casting Mg alloy with superior performance: study of microstructure and mechanical behavior. Mater Sci Eng A 802:140655. https://doi.org/10.1016/j.msea.2020.140655

    Article  CAS  Google Scholar 

  11. Polmear I, StJohn D, Nie J-F, Qian M (2017) Light alloys: metallurgy of the light metals. Butterworth-Heinemann, Oxford

  12. Jung Y-G, Yang W, Kim YJ et al (2021) Effect of Ca addition on the microstructure and mechanical properties of heat-treated Mg-6.0Zn-1.2Y-0.7Zr alloy. J Magnes Alloys 9:1619–1631. https://doi.org/10.1016/j.jma.2021.01.010

    Article  CAS  Google Scholar 

  13. Jang H-S, Lee J-K, Tapia AJSF, Kim NJ, Lee B-J (2022) Activation of non-basal <c + a> slip in multicomponent Mg alloys. J Magnes Alloys 10:585–597. https://doi.org/10.1016/j.jma.2021.03.007

    Article  CAS  Google Scholar 

  14. Lin H (2018) Research and Development of Mg-Al BasedCasting Magnesium Alloys with Low Cost. PhD Dissertation, Chongqing University.

  15. Wu G, Chen Y, Ding W (2016) Current research, application and future prospect of magnesium alloys in aerospace industry. Manned Spaceflight 22:281–292. https://doi.org/10.16329/j.cnki.zrht.2016.03.002

  16. Zhang D, Zhang D, Bu F et al (2017) Effects of minor Sr addition on the microstructure, mechanical properties and creep behavior of high pressure die casting AZ91-0.5 RE based alloy. Mater Sci Eng A 693:51–59. https://doi.org/10.1016/j.msea.2017.03.055

    Article  CAS  Google Scholar 

  17. Yang Y, Liu Y, Qin S, Fang Y (2006) High cycle fatigue properties of die-cast magnesium alloy AZ91D with addition of different concentrations of cerium. J Rare Earths 24:591–595. https://doi.org/10.1016/S1002-0721(06)60170-1

    Article  Google Scholar 

  18. Wei J, Wang Q, Cai H, Ebrahimi M, Lei C (2022) Microstructure and impact behavior of Mg-4Al-5RE-xGd cast magnesium alloys. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.06.014

    Article  Google Scholar 

  19. Dargusch M, Shi Z, Zhu H, Atrens A, Song G (2021) Microstructure modification and corrosion resistance enhancement of die-cast Mg-Al-Re alloy by Sr alloying. J Magnes Alloys 9:950–963. https://doi.org/10.1016/j.jma.2020.09.008

    Article  CAS  Google Scholar 

  20. Lv S, Lü X, Meng F, et al. (2020) Microstructures and mechanical properties in a Gd-modified high-pressure die casting Mg–4Al–3La−0.3 Mn alloy. Materi Sci Eng A 773: 138725. https://doi.org/10.1016/j.msea.2019.138725

  21. Zhang J, Leng Z, Zhang M, Meng J, Wu R (2011) Effect of Ce on microstructure, mechanical properties and corrosion behavior of high-pressure die-cast Mg–4Al-based alloy. J Alloy Compd 509:1069–1078. https://doi.org/10.1016/j.jallcom.2010.09.185

    Article  CAS  Google Scholar 

  22. Evangelista E, Gariboldi E, Lohne O, Spigarelli S (2004) High-temperature behaviour of as die-cast and heat treated Mg–Al–Si AS21X magnesium alloy. Mater Sci Eng A 387–389:41–45. https://doi.org/10.1016/j.msea.2004.02.077

    Article  CAS  Google Scholar 

  23. Yang Q, Bu F, Meng F et al (2015) The improved effects by the combinative addition of lanthanum and samarium on the microstructures and the tensile properties of high-pressure die-cast Mg–4Al-based alloy. Mater Sci Eng A 628:319–326. https://doi.org/10.1016/j.msea.2015.01.050

    Article  CAS  Google Scholar 

  24. Yang Q, Guan K, Bu F et al (2016) Microstructures and tensile properties of a high-strength die-cast Mg–4Al–2RE–2Ca–0.3 Mn alloy. Mater Charact 113:180–188. https://doi.org/10.1016/j.matchar.2016.01.024

    Article  CAS  Google Scholar 

  25. Zhang J, Ke L, Fang D et al (2009) Microstructures, mechanical properties and corrosion behavior of high-pressure die-cast Mg–4Al–0.4Mn–xPr (x=1, 2, 4, 6) alloys. J Alloy Compd 480:810–819. https://doi.org/10.1016/j.jallcom.2009.02.090

    Article  CAS  Google Scholar 

  26. Zhang J, Wang J, Qiu X et al (2008) Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg–4Al-based alloy. J Alloy Compd 464:556–564. https://doi.org/10.1016/j.jallcom.2007.10.056

    Article  CAS  Google Scholar 

  27. Zhang J, Yu P, Liu K, Fang D, Tang D, Meng J (2009) Effect of substituting cerium-rich mischmetal with lanthanum on microstructure and mechanical properties of die-cast Mg–Al–RE alloys. Mater Des 30:2372–2378. https://doi.org/10.1016/j.matdes.2008.10.028

    Article  CAS  Google Scholar 

  28. Braszczyńska-Malik K (2017) Effect of high-pressure die casting on structure and properties of Mg-5Al-0.4 Mn-xRE (x= 1, 3 and 5 wt%) experimental alloys. J Alloy Compd 694:841–847. https://doi.org/10.1016/j.jallcom.2016.10.033

    Article  CAS  Google Scholar 

  29. Zhang J, Zhang M, Meng J, Wu R, Tang D (2010) Microstructures and mechanical properties of heat-resistant high-pressure die-cast Mg–4Al–xLa–0.3 Mn (x= 1, 2, 4, 6) alloys. Mater Sci Eng A 527:2527–2537. https://doi.org/10.1016/j.msea.2009.12.048

    Article  CAS  Google Scholar 

  30. Zhang J, Liu S, Leng Z, Zhang M, Meng J, Wu R (2011) Microstructures and mechanical properties of heat-resistant HPDC Mg–4Al-based alloys containing cheap misch metal. Mater Sci Eng A 528:2670–2677. https://doi.org/10.1016/j.msea.2010.12.031

    Article  CAS  Google Scholar 

  31. Yang Y, Li X (2010) Influence of neodymium on high cycle fatigue behavior of die cast AZ91D magnesium alloy. J Rare Earths 28:456–460. https://doi.org/10.1016/S1002-0721(09)60133-2

    Article  CAS  Google Scholar 

  32. Zhang J, Niu X, Qiu X et al (2009) Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy. J Alloy Compd 471:322–330. https://doi.org/10.1016/j.jallcom.2008.03.089

    Article  CAS  Google Scholar 

  33. Cui X-P, Liu H-F, Jian M, Zhang D-P (2010) Microstructure and mechanical properties of die-cast AZ91D magnesium alloy by Pr additions. Trans Nonferrous Metals Soc China 20:s435–s438. https://doi.org/10.1016/S1003-6326(10)60513-4

    Article  CAS  Google Scholar 

  34. Hirai K, Somekawa H, Takigawa Y, Higashi K (2005) Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Mater Sci Eng A 403:276–280. https://doi.org/10.1016/j.msea.2005.05.028

    Article  CAS  Google Scholar 

  35. Feng W, Yue W, Mao P-L, Yu B-Y, Guo Q-Y (2010) Effects of combined addition of Y and Ca on microstructure and mechanical properties of die casting AZ91 alloy. Trans Nonferrous Metals Soc China 20:s311–s317. https://doi.org/10.1016/S1003-6326(10)60489-X

    Article  Google Scholar 

  36. Yang Q, Wu X, Zhang W et al (2023) Microstructures and mechanical properties of an ultrathin wall high-pressure die casting Mg-8Zn-8Al (wt%) alloy. J Alloy Compd 936:168200. https://doi.org/10.1016/j.jallcom.2022.168200

    Article  CAS  Google Scholar 

  37. Liu Z, Zhou J, Yang L, Lai Y, Liu Y, Jin H (2023) Study on microstructure and properties of Mg-Al-Si-Ca alloy by heat treatment. J Alloy Compd 947:169431. https://doi.org/10.1016/j.jallcom.2023.169431

    Article  CAS  Google Scholar 

  38. Li Q, Wang Q, Wang Y, Zeng X, Ding W (2007) Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloy. J Alloy Compd 427:115–123. https://doi.org/10.1016/j.jallcom.2006.02.054

    Article  CAS  Google Scholar 

  39. Lee JY, Lim HK, Kim DH, Kim WT, Kim DH (2007) Effect of volume fraction of qusicrystal on the mechanical properties of quasicrystal-reinforced Mg–Zn–Y alloys. Mater Sci Eng A 449:987–990. https://doi.org/10.1016/j.msea.2006.03.141

    Article  CAS  Google Scholar 

  40. Zengin H, Turen Y, Ahlatci H, Sun Y (2020) Microstructure, mechanical properties and corrosion resistance of as-cast and as-extruded Mg–4Zn–1La magnesium alloy. Rare Met 39:909–917. https://doi.org/10.1007/s12598-018-1045-7

    Article  CAS  Google Scholar 

  41. Meng F, Lv S, Yang Q et al (2022) Multiplex intermetallic phases in a gravity die-cast Mg−6.0Zn−1.5Nd−0.5Zr (wt%) alloy. J Magnes Alloys 10:209–223. https://doi.org/10.1016/j.jma.2020.10.005

    Article  CAS  Google Scholar 

  42. Wang J, Zhou H, Wang L, Zhu S, Guan S (2019) Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg–Zn–Y–Nd–Zr alloy for stent applications. J Mater Sci Technol 35:1211–1217. https://doi.org/10.1016/j.jmst.2019.01.007

    Article  CAS  Google Scholar 

  43. Vital A, Angermann A, Dittmann R, Graule T, Töpfer J (2007) Highly sinter-active (Mg–Cu)–Zn ferrite nanoparticles prepared by flame spray synthesis. Acta Mater 55:1955–1964. https://doi.org/10.1016/j.actamat.2006.11.002

    Article  CAS  Google Scholar 

  44. Lotfpour M, Emamy M, Dehghanian C, Tavighi K (2017) Influence of Cu addition on the structure, mechanical and corrosion properties of cast Mg-2% Zn alloy. J Mater Eng Perform 26:2136–2150. https://doi.org/10.1007/s11665-017-2672-0

    Article  CAS  Google Scholar 

  45. Liu C, Chen X, Chen J, Atrens A, Pan F (2021) The effects of Ca and Mn on the microstructure, texture and mechanical properties of Mg-4 Zn alloy. J Magnes Alloys 9:1084–1097. https://doi.org/10.1016/j.jma.2020.03.012

    Article  CAS  Google Scholar 

  46. Luo Z, Zhang S (1993) Microstructures of Mg-Zr, Mg-Zn, and Mg-Zn-Zr alloys. Acta Metall Sin 29:30–36. https://doi.org/10.3321/j.issn:1000-324X.2000.04.015

    Article  Google Scholar 

  47. Nakanishi M, Mabuchi M, Saito N, Nakamura M, Higashi K (1998) Tensile properties of the ZK60 magnesium alloy produced by hot extrusion of machined chip. J Mater Sci Lett 17:2003–2005. https://doi.org/10.1023/A:1006668924650

    Article  CAS  Google Scholar 

  48. Jun J, Kim J, Park B, Kim K, Jung W (2005) Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy. J Mater Sci 40:2659–2661. https://doi.org/10.1007/s10853-005-2099-0

    Article  CAS  Google Scholar 

  49. Zhang L, Zhang Y, Zhang J, Zhao R, Xu C (2020) Effect of alloyed Mo on mechanical properties, biocorrosion and cytocompatibility of As-Cast Mg-Zn-Y-Mn alloys. Metal Sinica (English Letters) 33:500–513. https://doi.org/10.1007/s40195-019-00995-z

  50. Zhao R, Zhu W, Zhang J, Zhang L, Zhang J, Xu C (2020) Influence of Ni and Bi microalloying on microstructure and mechanical properties of as-cast low RE LPSO-containing Mg–Zn–Y–Mn alloy. Mater Sci Eng A 788:139594. https://doi.org/10.1016/j.msea.2020.139594

    Article  CAS  Google Scholar 

  51. Liu Y, Wen J, He J, Li H (2020) Enhanced mechanical properties and corrosion resistance of biodegradable Mg–Zn–Zr–Gd alloy by Y microalloying. J Mater Sci 55:1813–1825. https://doi.org/10.1007/s10853-019-04026-1

    Article  CAS  Google Scholar 

  52. Cheng P, Zhao Y, Lu R, Hou H (2018) Effect of the morphology of long-period stacking ordered phase on mechanical properties and corrosion behavior of cast Mg-Zn-Y-Ti alloy. J Alloy Compd 764:226–238. https://doi.org/10.1016/j.jallcom.2018.06.056

    Article  CAS  Google Scholar 

  53. Zhu S, Luo T, Zhang T, Li Y, Yang Y (2017) Effects of Cu addition on the microstructure and mechanical properties of as-cast and heat treated Mg-6Zn-4Al magnesium alloy. Mater Sci Eng A 689:203–211. https://doi.org/10.1016/j.msea.2017.02.061

    Article  CAS  Google Scholar 

  54. Xiao W, Jia S, Wang J, Wang J, Wang L (2008) Investigation on the microstructure and mechanical properties of a cast Mg–6Zn–5Al–4RE alloy. J Alloy Compd 458:178–183. https://doi.org/10.1016/j.jallcom.2007.03.118

    Article  CAS  Google Scholar 

  55. Ma T, Wang J, Cheng K et al (2022) The chemical environment and structural ordering in liquid Mg-Y-Zn system: An ab-initio molecular dynamics investigation of melt for the formation mechanism of LPSO structure. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.06.006

    Article  Google Scholar 

  56. Li J, Dong Z, Yi X, Wu D, Chen R (2023) Twin evolution in cast Mg-Gd-Y alloys and its dependence on aging heat treatment. J Magnes Alloys 11:2285–2298. https://doi.org/10.1016/j.jma.2021.09.023

    Article  CAS  Google Scholar 

  57. Fu P (2009) Study on the microstructure, mechanical properties and strengthen mechanism of Mg-Nd-Zn-Zr Alloys. PhD Dissertation, Shanghai Jiao Tong University.

  58. Meier JM, Caris J, Luo AA (2022) Towards high strength cast Mg-RE based alloys: phase diagrams and strengthening mechanisms. J Magnes Alloys 10:1401–1427. https://doi.org/10.1016/j.jma.2022.03.008

    Article  CAS  Google Scholar 

  59. Li D, Wang Q, Ding W (2006) Characterization of phases in Mg–4Y–4Sm–0.5 Zr alloy processed by heat treatment. Mater Sci Eng A 428:295–300. https://doi.org/10.1016/j.msea.2006.05.011

    Article  CAS  Google Scholar 

  60. Nie JF, Muddle BC (2000) Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Mater 48:1691–1703. https://doi.org/10.1016/S1359-6454(00)00013-6

    Article  CAS  Google Scholar 

  61. Kamado S, Iwasawa S, Ohuchi K, Kojima Y, Ninomiya R (1992) Age hardening characteristics and high temperature strength of Mg-Gd and Mg-Tb alloys. Keikinzoku 42:727–733. https://doi.org/10.2464/jilm.42.727

    Article  CAS  Google Scholar 

  62. Eifert A, Thomas J, Rateick R Jr (1999) Influence of anodization on the fatigue life of WE43A-T6 magnesium. Scripta Mater 40:929–935. https://doi.org/10.1016/S1359-6462(99)00040-8

    Article  CAS  Google Scholar 

  63. Xie H, Liu Z, Liu X et al (2020) Microstructure, generation of intermetallic compounds and mechanical strengthening mechanism of as-cast Mg–4Y–xZn alloys. Mater Sci Eng A 797:139948. https://doi.org/10.1016/j.msea.2020.139948

    Article  CAS  Google Scholar 

  64. Lyu J, Kim J, Liao H et al (2020) Effect of substitution of Zn with Ni on microstructure evolution and mechanical properties of LPSO dominant Mg–Y–Zn alloys. Mater Sci Eng A 773:138735. https://doi.org/10.1016/j.msea.2019.138735

    Article  CAS  Google Scholar 

  65. Liu B, Zhang K, Han J et al (2015) Homogenization heat treatment of Mg–7.0 wt%Y–1.0 wt%Nd–0.5 wt%Zr alloy. Rare Metals, pp 1–6. https://doi.org/10.1007/s12598-015-0588-0

  66. Jiang Q, Lv X, Lu D, Zhang J, Hou B (2018) The corrosion behavior and mechanical property of the Mg–7Y–xNd ternary alloys. J Magnes Alloys 6:346–355. https://doi.org/10.1016/j.jma.2018.09.002

    Article  CAS  Google Scholar 

  67. Li J, He Z, Fu P, Wu Y, Peng L, Ding W (2016) Heat treatment and mechanical properties of a high-strength cast Mg–Gd–Zn alloy. Mater Sci Eng A 651:745–752. https://doi.org/10.1016/j.msea.2015.11.021

    Article  CAS  Google Scholar 

  68. Zhang S, Liu W, Gu X, Lu C, Yuan G, Ding W (2013) Effect of solid solution and aging treatments on the microstructures evolution and mechanical properties of Mg–14Gd–3Y–1.8Zn–0.5Zr alloy. J Alloy Compd 557:91–97. https://doi.org/10.1016/j.jallcom.2012.12.093

    Article  CAS  Google Scholar 

  69. Wu G, Wang C, Sun M, Ding W (2020) Recent developments and applications on high-performance cast magnesium rare-earth alloys. J Magnes Alloys 9:1–20. https://doi.org/10.1016/j.jma.2020.06.021

    Article  CAS  Google Scholar 

  70. Song J, She J, Chen D, Pan F (2020) Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloys 8:1–41. https://doi.org/10.1016/j.jma.2020.02.003

    Article  CAS  Google Scholar 

  71. Zhou B, Liu W, Wu G et al (2020) Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5 Zr alloy subject to thermal cycling treatment. J Mater Sci Technol 43:208–219. https://doi.org/10.1016/j.jmst.2020.01.013

    Article  CAS  Google Scholar 

  72. Xiao Y, Zhang X, Chen J, Jiang H, Deng Z (2006) Performance of Mg-9Gd-4Y-0.6Zr alloy with high strength and heat resistance. J Central South Univ (Science and Technology) 37: 850–855.

  73. Zhang N (2019) Effect of Sn on microstructure and mechanical properties of Mg-Gd-Zn alloy. PhD Dissertation, Chongqing University.

  74. Peng Q, Dong H, Wang L, Wu Y, Wang L (2008) Microstructure and mechanical property of Mg–8.31 Gd–1.12 Dy–0.38 Zr alloy. Mater Sci Eng A 477:193–197. https://doi.org/10.1016/j.msea.2007.05.081

    Article  CAS  Google Scholar 

  75. Liu N, Zhang Z, Peng L, Ding W (2015) Microstructure evolution and mechanical properties of Mg-Gd-Sm-Zr alloys. Mater Sci Eng A 627:223–229. https://doi.org/10.1016/j.msea.2014.12.114

    Article  CAS  Google Scholar 

  76. Zheng K (2008) Study on the Microstructure and Mechanical Properties of High Strength and Heat Resistant Mg-Gd-Nd-Zr Alloys. PhD Dissertation, Shanghai Jiao Tong University.

  77. Wu X, Pan F, Cheng R, Luo S (2018) Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5Zr magnesium alloy. Mater Sci Eng A 726:64–68. https://doi.org/10.1016/j.msea.2018.04.079

    Article  CAS  Google Scholar 

  78. Yu X, Wang G, Bai Y, Ye B (2022) Research Status and Development Trend of Die-casting Heat-resistant. Special Casti Nonferrous Alloys 42:144–151. https://doi.org/10.15980/j.tzzz.2022.02.003

  79. Zhang D, Yang Q, Li B et al (2019) Improvement on both strength and ductility of Mg−Sm−Zn−Zr casting alloy via Yb addition. J Alloy Compd 805:811–821. https://doi.org/10.1016/j.jallcom.2019.07.094

    Article  CAS  Google Scholar 

  80. Liu J, Yang L, Zhang C et al (2019) Significantly improved corrosion resistance of Mg-15Gd-2Zn-0.39Zr alloys: Effect of heat-treatment. J Mater Sci Technol 35:1644–1654. https://doi.org/10.1016/j.jmst.2019.03.027

    Article  CAS  Google Scholar 

  81. Wang K, Wang J, Dou X et al (2020) Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting. J Mater Sci Technol 52:72–82. https://doi.org/10.1016/j.jmst.2020.04.013

    Article  Google Scholar 

  82. Srinivasan A, Huang Y, Mendis C, Blawert C, Kainer K, Hort N (2014) Investigations on microstructures, mechanical and corrosion properties of Mg–Gd–Zn alloys. Mater Sci Eng A 595:224–234. https://doi.org/10.1016/j.msea.2013.12.016

    Article  CAS  Google Scholar 

  83. Wang D, Zhang W, Zong X, Nie K, Xu C, Zhang J (2014) Abundant long period stacking ordered structure induced by Ni addition into Mg–Gd–Zn alloy. Mater Sci Eng A 618:355–358. https://doi.org/10.1016/j.msea.2014.09.015

    Article  CAS  Google Scholar 

  84. Yamada K, Hoshikawa H, Maki S et al (2009) Enhanced age-hardening and formation of plate precipitates in Mg–Gd–Ag alloys. Scripta Mater 61:636–639. https://doi.org/10.1016/j.scriptamat.2009.05.044

    Article  CAS  Google Scholar 

  85. Wang Q, Chen J, Zhao Z, He S (2010) Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy. Mater Sci Eng A 528:323–328. https://doi.org/10.1016/j.msea.2010.09.004

    Article  CAS  Google Scholar 

  86. Fu S (2016) Microstructure and properties of heat-resistant Mg-Gd(-Y-Sm-Zr) magnesium alloys. PhD Dissertation, Xi’an University of Technology.

  87. Yan J (2017) Study on the microstructure and properties of heat resistant magnesium alloys Mg-10Gd-3Y-xNd-0.5Zr. PhD Dissertation, Henan University of Science and Technology.

  88. Wu G, Jafari Nodooshan H, Zeng X, Liu W, Li D, Ding W (2018) Microstructure and high temperature tensile properties of Mg–10Gd–5Y–0.5 Zr alloy after thermo-mechanical processing. Metals 8:980. https://doi.org/10.3390/met8120980

  89. Ke-Jie L, Quan-An L (2011) Microstructure and superior mechanical properties of cast Mg–12Gd–2Y–0.5Sm–0.5Sb–0.5Zr alloy. Mater Sci Eng A 528:5453–5457. https://doi.org/10.1016/j.msea.2011.03.049

    Article  CAS  Google Scholar 

  90. Peng Q, Hou X, Wang L, Wu Y, Cao Z, Wang L (2009) Microstructure and mechanical properties of high performance Mg–Gd based alloys. Mater Des 30:292–296. https://doi.org/10.1016/j.matdes.2008.04.069

    Article  CAS  Google Scholar 

  91. Liu X, Chen R, Han E (2008) Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J Alloy Compd 465:232–238. https://doi.org/10.1016/j.jallcom.2007.10.068

    Article  CAS  Google Scholar 

  92. Peng QM, Wu YM, Fang DQ, Meng J, Wang LM (2007) Microstructures and properties of Mg–7Gd alloy containing Y. J Alloy Compd 430:252–256. https://doi.org/10.1016/j.jallcom.2006.05.004

    Article  CAS  Google Scholar 

  93. Chen X, Li Q, Chen J, Zhu L (2019) Microstructure and mechanical properties of Mg-Gd-Y-Sm-Al alloy and analysis of grain refinement and strengthening mechanism. J Rare Earths 37:1351–1358. https://doi.org/10.1016/j.jre.2018.12.014

    Article  CAS  Google Scholar 

  94. Mathieu S, Rapin C, Steinmetz J, Steinmetz P (2003) A corrosion study of the main constituent phases of AZ91 magnesium alloys. Corros Sci 45:2741–2755. https://doi.org/10.1016/S0010-938X(03)00109-4

    Article  CAS  Google Scholar 

  95. Ambat R, Aung NN, Zhou W (2000) Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corros Sci 42:1433–1455. https://doi.org/10.1016/S0010-938X(99)00143-2

    Article  CAS  Google Scholar 

  96. Haitani T, Tamura Y, Motegi T, Kono N, Tamehiro H (2003) Solubility of Iron in Pure Magnesium and Cast Structure of Mg-Fe Alloy. Mater Sci Forum 419:697–702. https://doi.org/10.4028/www.scientific.net/MSF.440-441

    Article  Google Scholar 

  97. Haitani T, Tamura Y, Motegi T, Kono N, Tamehiro H, Sato E (2002) Solubility of iron into pure magnesium and Mg-Al alloy melts. Journal of Japan Institute of Light Metals 52:591–597. https://doi.org/10.2464/jilm.52.591

    Article  CAS  Google Scholar 

  98. Gu D, Wang J, Chen Y, Peng J (2020) Effect of Mn addition and refining process on Fe reduction of Mg−Mn alloys made from magnesium scrap. Trans Nonferrous Metals Soc China 30:2941–2951. https://doi.org/10.1016/S1003-6326(20)65433-4

    Article  CAS  Google Scholar 

  99. Kim JI, Nguyen HN, You BS, Kim YM (2019) Effect of Y addition on removal of Fe impurity from magnesium alloys. Scripta Mater 162:355–360. https://doi.org/10.1016/j.scriptamat.2018.11.046

    Article  CAS  Google Scholar 

  100. Wang Q, Tang A, Xu T, Yu Z, Li S (2016) Influence of Mn addition on the distribution of silicon in magnesium alloys. China Sciencepaper 11:404–408. https://doi.org/10.3969/j.issn.2095-2783.2016.04.011

    Article  Google Scholar 

  101. Bakke P, Laurin J, Provost A, Karlsen D (1997) Consistency of inclusions in pure magnesium. Light Metals-Warrendale, pp 1019–1028.

  102. Baek UH, Lee BD, Lee KW, Yoon JY, Han GS, Han JW (2016) Removal of Ca from magnesium melt by flux refining. Mater Trans 57:1156–1164. https://doi.org/10.2320/matertrans.M2015426

    Article  CAS  Google Scholar 

  103. Gao HT, Wu GH, Ding WJ, Zhu YP (2004) Effect of boride on purification of magnesium alloy. Foundry Technol 25:8–10. https://doi.org/10.3969/j.issn.1000-8365.2004.09.002

    Article  Google Scholar 

  104. Zhai C, Ding W, Xu X, Deng Z, Yu Z (2002) Development of new type hazardless fluxes used in the melting of Mg-alloys. Special Cast Nonferrous Alloys 3:284–286. https://doi.org/10.15980/j.tzzz.2002.s1.11

  105. Zhang J, He L, Li P (2005) Purification technique of regenerated magnesium alloy melt. Foundry 54:5. https://doi.org/10.3321/j.issn:1001-4977.2005.07.007

  106. Wang J, Zhou J-x, Tong W-h, Yang Y-s (2010) Effect of purification treatment on properties of Mg-Gd-Y-Zr alloy. Trans Nonferrous Metals Soc China 20:1235–1239. https://doi.org/10.1016/S1003-6326(09)60284-3

    Article  CAS  Google Scholar 

  107. Cahn RW (ed) (1996) Structure and properties of nonferrous alloys. Struct Properties oNonferrous Alloys, 8.

  108. Guo X, Li P, Zeng D, Liu S (2004) Inclusions decrease in recycling magnesium alloy with rare earths. Chin J Nonferrous Metals 14:1295–1300. https://doi.org/10.19476/j.ysxb.1004.0609.2004.08.007

    Article  CAS  Google Scholar 

  109. Wang W, Wang WuG, Q, Huang Y, Sun M, Ding W-j (2008) Investigation of flux containing GdCl3 on recycling Mg-Gd-Y-Zr scraps. Trans Nonferrous Metals Soc China 18:s292–s298. https://doi.org/10.1016/S1003-6326(10)60220-8

    Article  CAS  Google Scholar 

  110. Wang W, Huang Y, Wu G, Wang Q, Sun M, Ding W (2009) Influence of flux containing YCl3 additions on purifying effectiveness and properties of Mg–10Gd–3Y–0.5Zr alloy. J Alloy Compd 480:386–391. https://doi.org/10.1016/j.jallcom.2009.02.073

    Article  CAS  Google Scholar 

  111. Zhang Z, Le Q, Cui J, Wang X, Zhang H (2010) Purification process of magnesium alloy melt under ultrasonic field. Special Cast Nonferrous Alloys 11:988–991. https://doi.org/10.3870/tzzz.2010.11.003

    Article  CAS  Google Scholar 

  112. Zha J, Shaoyong XU, You G (2011) A continuous fluxiess purification technique for Mg scrap melt. In: International conference on advanced engineering materials and technology.

  113. Zha J (2018) A study on Mg melt continuous non-flux purification theory and key techniques. PhD Dissertation, Chongqing University.

  114. Li Z, Qiao X, Xu C, Liu X, Kamado S, Zheng M (2020) Enhanced strength by precipitate modification in wrought Mg–Al–Ca alloy with trace Mn addition. J Alloy Compd 836:154689. https://doi.org/10.1016/j.jallcom.2020.154689

    Article  CAS  Google Scholar 

  115. Li H, Wang K, Xu G, Jiang H, Wang Q, Wang Y (2021) Effective inhibition of anomalous grain coarsening in cast AZ91 alloys during fast cooling via nanoparticle addition. J Magnes Alloys 7:32. https://doi.org/10.1016/j.jma.2021.10.008

    Article  CAS  Google Scholar 

  116. Peng X, Liang X, Liu W et al (2021) High-cycle fatigue behavior of Mg-8Li-3Al-2Zn-0.5Y alloy under different states. J Magnes Alloys 9:1609–1618. https://doi.org/10.1016/j.jma.2020.07.012

    Article  CAS  Google Scholar 

  117. Fan Z, Gao F, Wang Y, Wang SH, Patel JB (2022) Grain refinement of Mg-alloys by native MgO particles: an overview. J Magnes Alloys 10:2919–2945. https://doi.org/10.1016/j.jma.2022.10.006

    Article  CAS  Google Scholar 

  118. Yang H, Huang Y, Song B, Kainer KU, Dieringa H (2019) Enhancing the creep resistance of AlN/Al nanoparticles reinforced Mg-2.85Nd-0.92Gd-0.41Zr-0.29Zn alloy by a high shear dispersion technique. Mater Sci Eng A 755:18–27. https://doi.org/10.1016/j.msea.2019.03.131

    Article  CAS  Google Scholar 

  119. Zhang A, Zhao Z, Yin G, Lin C (2017) A novel model to account for the heterogeneous nucleation mechanism of α-Mg refined with Al4C3 in Mg-Al alloy. Comput Mater Sci 140:61–69. https://doi.org/10.1016/j.commatsci.2017.08.032

    Article  CAS  Google Scholar 

  120. Peng L, Zeng G, Lin CJ, Gourlay CM (2020) Al2MgC2 and AlFe3C formation in AZ91 Mg alloy melted in Fe-C crucibles. J Alloy Compd 854:156415. https://doi.org/10.1016/j.jallcom.2020.156415

    Article  CAS  Google Scholar 

  121. Qiu D, Zhang M-X, Kelly PM (2009) Crystallography of heterogeneous nucleation of Mg grains on Al2Y nucleation particles in an Mg–10 wt.% Y alloy. Scripta Mater 61:312–315. https://doi.org/10.1016/j.scriptamat.2009.04.011

    Article  CAS  Google Scholar 

  122. Jiang Z, Jiang B, Zeng Y, Dai J, Pan F (2015) Role of Al modification on the microstructure and mechanical properties of as-cast Mg–6Ce alloys. Mater Sci Eng A 645:57–64. https://doi.org/10.1016/j.msea.2015.08.002

    Article  CAS  Google Scholar 

  123. Turnbull D, Vonnegut B (1952) Nucleation catalysis. Ind Eng Chem 44:1292–1298. https://doi.org/10.1021/ie50510a031

    Article  CAS  Google Scholar 

  124. Bramfitt BL (1970) The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metallurgical Transactions 1:1987–1995. https://doi.org/10.1007/BF02642799

    Article  CAS  Google Scholar 

  125. Zhang M-X, Kelly P (1998) Crystallography and morphology of Widmanstätten cementite in austenite. Acta Mater 46:4617–4628. https://doi.org/10.1016/S1359-6454(98)00139-6

    Article  CAS  Google Scholar 

  126. Zhang M-X, Kelly PM, Easton MA, Taylor JA (2005) Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model. Acta Mater 53:1427–1438. https://doi.org/10.1016/j.actamat.2004.11.037

    Article  CAS  Google Scholar 

  127. Zhang M, Kelly P, Qian M, Taylor J (2005) Crystallography of grain refinement in Mg–Al based alloys. Acta Mater 53:3261–3270. https://doi.org/10.1016/j.actamat.2005.03.030

    Article  CAS  Google Scholar 

  128. Qiu D, Zhang M-X, Taylor J, Fu H, Kelly P (2007) A novel approach to the mechanism for the grain refining effect of melt superheating of Mg–Al alloys. Acta Mater 55:1863–1871. https://doi.org/10.1016/j.actamat.2006.10.047

    Article  CAS  Google Scholar 

  129. Qiu D, Zhang M-X (2009) Effect of active heterogeneous nucleation particles on the grain refining efficiency in an Mg–10 wt.% Y cast alloy. J Alloy Compd 488:260–264. https://doi.org/10.1016/j.jallcom.2009.08.100

    Article  CAS  Google Scholar 

  130. Wang F, Qiu D, Liu Z-L, Taylor JA, Easton MA, Zhang M-X (2013) The grain refinement mechanism of cast aluminium by zirconium. Acta Mater 61:5636–5645. https://doi.org/10.1016/j.actamat.2013.05.044

    Article  CAS  Google Scholar 

  131. Jiang B, Liu W, Qiu D, Zhang M-X, Pan F (2012) Grain refinement of Ca addition in a twin-roll-cast Mg–3Al–1Zn alloy. Mater Chem Phys 133:611–616. https://doi.org/10.1016/j.matchemphys.2011.12.087

    Article  CAS  Google Scholar 

  132. Qiu D, Zhang M-X, Taylor J, Kelly P (2009) A new approach to designing a grain refiner for Mg casting alloys and its use in Mg–Y-based alloys. Acta Mater 57:3052–3059. https://doi.org/10.1016/j.actamat.2009.03.011

    Article  CAS  Google Scholar 

  133. Dai J, Easton M, Zhu S, Wu G, Ding W (2012) Grain refinement of Mg–10Gd alloy by Al additions. J Mater Res 27:2790–2797. https://doi.org/10.1557/jmr.2012.313

    Article  CAS  Google Scholar 

  134. Wang C, Dai J, Liu W, Zhang L, Wu G (2015) Effect of Al additions on grain refinement and mechanical properties of Mg–Sm alloys. J Alloy Compd 620:172–179. https://doi.org/10.1016/j.jallcom.2014.09.025

    Article  CAS  Google Scholar 

  135. Dai J (2014) Study on the effects of al and trace elementson grain refinement behavior,microstructure and mechanical propertiesof Mg-Gd(-Y)alloys. PhD Dissertation, Shanghai Jiao Tong University.

  136. Rzychoń T, Kiełbus A, Cwajna J, Mizera J (2009) Microstructural stability and creep properties of die casting Mg–4Al–4RE magnesium alloy. Mater Charact 60:1107–1113. https://doi.org/10.1016/j.matchar.2009.05.014

    Article  CAS  Google Scholar 

  137. Li S, Zheng W, Tang B, Zeng D, Guo X (2007) Grain coarsening behavior of Mg-Al alloys with mischmetal addition. J Rare Earths 25:227–232. https://doi.org/10.1016/S1002-0721(07)60078-7

    Article  Google Scholar 

  138. Dai J, Zhu S, Easton MA et al (2013) Heat treatment, microstructure and mechanical properties of a Mg–Gd–Y alloy grain-refined by Al additions. Mater Sci Eng A 576:298–305. https://doi.org/10.1016/j.msea.2013.04.016

    Article  CAS  Google Scholar 

  139. Vidrich G, Moll O, Ferkel H (2005) Grain-refining of MG alloys by nanoscaled TiN Particles. Magnes Technol 02:13–17

    Google Scholar 

  140. Klösch G, McKay B, Schumacher P (2016) Preliminary investigation on the grain refinement behavior of ZrB2 particles in Mg-Al alloys. Essential Read Magnes Technol, pp 255–261. https://doi.org/10.1007/978-3-319-48099-2_42

  141. Wang Y, Zeng X, Ding W (2006) Effect of Al–4Ti–5B master alloy on the grain refinement of AZ31 magnesium alloy. Scripta Mater 54:269–273. https://doi.org/10.1016/j.scriptamat.2005.09.022

    Article  CAS  Google Scholar 

  142. Liu S, Zhang Y, Han H, Li B (2009) Effect of Mg–TiB2 master alloy on the grain refinement of AZ91D magnesium alloy. J Alloy Compd 487:202–205. https://doi.org/10.1016/j.jallcom.2009.08.065

    Article  CAS  Google Scholar 

  143. Qian M, Cao P (2005) Discussions on grain refinement of magnesium alloys by carbon inoculation. Scripta Mater 52:415–419. https://doi.org/10.1016/j.scriptamat.2004.10.014

    Article  CAS  Google Scholar 

  144. Jin Q, Eom J-P, Lim S-G, Park W-W, You B-S (2003) Grain refining mechanism of a carbon addition method in a Mg–Al magnesium alloy. Scripta Mater 49:1129–1132. https://doi.org/10.1016/j.scriptamat.2003.07.001

    Article  CAS  Google Scholar 

  145. Motegi T (2005) Grain-refining mechanisms of superheat-treatment of and carbon addition to Mg–Al–Zn alloys. Mater Sci Eng A 413–414:408–411. https://doi.org/10.1016/j.msea.2005.08.214

    Article  CAS  Google Scholar 

  146. Kim YM, Wang L, You BS (2010) Grain refinement of Mg–Al cast alloy by the addition of manganese carbonate. J Alloy Compd 490:695–699. https://doi.org/10.1016/j.jallcom.2009.10.141

    Article  CAS  Google Scholar 

  147. Du J, Wang M, Li W (2010) Effects of Fe addition and addition sequence on carbon inoculation of Mg–3%Al alloy. J Alloy Compd 502:74–79. https://doi.org/10.1016/j.jallcom.2010.04.156

    Article  CAS  Google Scholar 

  148. Huang Y, Kainer KU, Hort N (2011) Mechanism of grain refinement of Mg–Al alloys by SiC inoculation. Scripta Mater 64:793–796. https://doi.org/10.1016/j.scriptamat.2011.01.005

    Article  CAS  Google Scholar 

  149. Easton MA, Schiffl A, Yao J-Y, Kaufmann H (2006) Grain refinement of Mg–Al(–Mn) alloys by SiC additions. Scripta Mater 55:379–382. https://doi.org/10.1016/j.scriptamat.2006.04.014

    Article  CAS  Google Scholar 

  150. Chen X, Ning F, Hou J, Le Q, Tang Y (2018) Dual-frequency ultrasonic treatment on microstructure and mechanical properties of ZK60 magnesium alloy. Ultrason Sonochem 40:433–441. https://doi.org/10.1016/j.ultsonch.2017.07.027

    Article  CAS  PubMed  Google Scholar 

  151. Liu X, Osawa Y, Takamori S, Mukai T (2008) Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Mater Sci Eng A 487:120–123. https://doi.org/10.1016/j.msea.2007.09.071

    Article  CAS  Google Scholar 

  152. Mizutani Y, Tamura T, Miwa K (2005) Microstructural refinement process of pure magnesium by electromagnetic vibrations. Mater Sci Eng A 413–414:205–210. https://doi.org/10.1016/j.msea.2005.09.009

    Article  CAS  Google Scholar 

  153. Chen X, Jia Y, Liao Q et al (2019) The simultaneous application of variable frequency ultrasonic and low frequency electromagnetic fields in semi continuous casting of AZ80 magnesium alloy. J Alloy Compd 774:710–720. https://doi.org/10.1016/j.jallcom.2018.09.300

    Article  CAS  Google Scholar 

  154. Tao T, Zhou D, Liu J, Wang X (2022) Improvement of laser welded joint properties of AZ31B magnesium alloy to DP590 dual-phase steel produced by external magnetic field. J Manuf Process 79:270–283. https://doi.org/10.1016/j.jmapro.2022.04.069

    Article  Google Scholar 

  155. Bai S, Wang F, Du X et al (2023) Effect of alternating magnetic fields on hot tearing susceptibility of Mg–4Zn–1.5 Ca alloy. Mater Sci Technol 39:50–61. https://doi.org/10.1080/02670836.2022.2100605

    Article  CAS  Google Scholar 

  156. Zhou Y, Mao P, Wang Z, Zhou L, Wang F, Liu Z (2020) Effect of low frequency alternating magnetic field on hot tearing susceptibility of Mg-7Zn-1Cu-0.6 Zr magnesium alloy. J Mater Process Technol 282:116679. https://doi.org/10.1016/j.jmatprotec.2020.116679

  157. Liu W, Jiang L, Cao L et al (2014) Fatigue behavior and plane-strain fracture toughness of sand-cast Mg–10Gd–3Y–0.5 Zr magnesium alloy. Mater Des 59:466–474. https://doi.org/10.1016/j.matdes.2014.03.026

    Article  CAS  Google Scholar 

  158. Li Y, Zhang A, Li C et al (2023) Recent advances of high strength Mg-RE alloys: alloy development, forming and application. J Market Res 26:2919–2940. https://doi.org/10.1016/j.jmrt.2023.08.055

    Article  CAS  Google Scholar 

  159. Liu W, Zhou B, Wu G, Zhang L, Peng X, Cao L (2019) High temperature mechanical behavior of low-pressure sand-cast Mg–Gd–Y–Zr magnesium alloy. J Magnes Alloys 7:597–604. https://doi.org/10.1016/j.jma.2019.07.006

    Article  CAS  Google Scholar 

  160. Li Y, Wu G, Chen A et al (2015) Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting. J Mater Res 30:3461–3473. https://doi.org/10.1557/jmr.2015.306

    Article  CAS  Google Scholar 

  161. Jorstad J, Apelian D (2008) Pressure assisted processes for high integrity aluminum castings. Int J Metalcast 2:19–39. https://doi.org/10.1007/BF03355420

    Article  CAS  Google Scholar 

  162. Liu H, Ning Z, Sun H et al (2016) Microstructure and elevated-temperature tensile properties of differential pressure sand cast Mg-4Y-3Nd-0.5 Zr alloy. China Foundry 13:30–35. https://doi.org/10.1007/s41230-016-5014-1

    Article  Google Scholar 

  163. Yang L, Kang Y, Zhang F et al (2010) Rheo-diecasting of AZ91D magnesium alloy by taper barrel rheomoulding process. Trans Nonferrous Metals Soc China 20:966–972. https://doi.org/10.1016/s1003-6326(09)60243-0

    Article  CAS  Google Scholar 

  164. Lin C, Wu S, Lü S, An P, Wan L (2013) Microstructure and mechanical properties of rheo-diecast hypereutectic Al–Si alloy with 2%Fe assisted with ultrasonic vibration process. J Alloy Compd 568:42–48. https://doi.org/10.1016/j.jallcom.2013.03.089

    Article  CAS  Google Scholar 

  165. Fan Z (2005) Development of the rheo-diecasting process for magnesium alloys. Mater Sci Eng A 413:72–78. https://doi.org/10.1016/j.msea.2005.09.038

    Article  CAS  Google Scholar 

  166. Ji S, Qian M, Fan Z (2006) Semisolid processing characteristics of AM series Mg alloys by rheo-diecasting. Metall Mater Trans A 37:779–787. https://doi.org/10.1007/s11661-006-0049-3

    Article  Google Scholar 

  167. Fan Z, Liu G, Wang Y (2006) Microstructure and mechanical properties of rheo-diecast AZ91D magnesium alloy. J Mater Sci 41:3631–3644. https://doi.org/10.1007/s10853-006-6248-x

    Article  CAS  Google Scholar 

  168. Zhou B, Kang YL, Qi MF, Zhang HH, Zhu GM (2015) Microstructure and property of Rheo-diecasting magnesium-alloy with forced convection mixing process. Solid State Phenom 217:455–460. https://doi.org/10.4028/www.scientific.net/SSP.217-218.455

    Article  CAS  Google Scholar 

  169. Qi M, Kang Y, Zhou B et al (2016) A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys. J Mater Process Technol 234:353–367. https://doi.org/10.1016/j.jmatprotec.2016.04.003

    Article  CAS  Google Scholar 

  170. Weiler JP (2019) A review of magnesium die-castings for closure applications. J Magnes Alloys 7:297–304. https://doi.org/10.1016/j.jma.2019.02.005

    Article  CAS  Google Scholar 

  171. Dong X, Feng L, Wang S, Nyberg EA, Ji S (2021) A new die-cast magnesium alloy for applications at higher elevated temperatures of 200–300 °C. J Magnes Alloys 9:90–101. https://doi.org/10.1016/j.jma.2020.09.012

    Article  CAS  Google Scholar 

  172. Zhu S, Abbott TB, Nie J-F et al (2021) Re-evaluation of the mechanical properties and creep resistance of commercial magnesium die-casting alloy AE44. J Magnes Alloys 9:1537–1545. https://doi.org/10.1016/j.jma.2021.04.016

    Article  CAS  Google Scholar 

  173. Wang GG, Bos J (2018) A study on joining magnesium alloy high pressure die casting components with thread forming fasteners. J Magnes Alloys 6:114–120. https://doi.org/10.1016/j.jma.2018.04.002

    Article  CAS  Google Scholar 

  174. Prasad SVS, Prasad SB, Verma K, Mishra RK, Kumar V, Singh S (2022) The role and significance of Magnesium in modern day research—a review. J Magnes Alloys 10:1–61. https://doi.org/10.1016/j.jma.2021.05.012

    Article  CAS  Google Scholar 

  175. Dong X, Zhu X, Ji S (2019) Effect of super vacuum assisted high pressure die casting on the repeatability of mechanical properties of Al-Si-Mg-Mn die-cast alloys. J Mater Process Technol 266:105–113. https://doi.org/10.1016/j.jmatprotec.2018.10.030

    Article  CAS  Google Scholar 

  176. Li S, Li D, Zeng X, Ding W (2014) Microstructure and mechanical properties of Mg–6Gd–3Y–0.5Zr alloy processed by high-vacuum die-casting. Trans Nonferrous Metals Soc China 24:3769–3776. https://doi.org/10.1016/S1003-6326(14)63531-7

    Article  CAS  Google Scholar 

  177. Niyama E (1982) A method of shrinkage prediction and its application to steel casting practice. In: International foundry congress

  178. Carlson KD, Beckermann C (2009) Prediction of shrinkage pore volume fraction using a dimensionless Niyama criterion. Metall Mater Trans A 40:163–175. https://doi.org/10.1007/s11661-008-9715-y

    Article  CAS  Google Scholar 

  179. Zhang A, Du J, Zhang X et al (2020) Phase-field modeling of microstructure evolution in the presence of bubble during solidification. Metall Mater Trans A 51:1023–1037. https://doi.org/10.1007/s11661-019-05593-3

    Article  CAS  Google Scholar 

  180. Zhang A, Guo Z, Jiang B et al (2021) Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification. Acta Mater 214:117005. https://doi.org/10.1016/j.actamat.2021.117005

    Article  CAS  Google Scholar 

  181. Su X, Feng Z, Wang F, Li Y, Li Z, Lou Y (2021) Effect of pouring and mold temperatures on hot tearing susceptibility of WE43 magnesium alloy. Int J Metalcast 15:576–586. https://doi.org/10.1007/s40962-020-00493-4

    Article  CAS  Google Scholar 

  182. Leng F, Wang F, Wang Z, Du X, Liu Z, Mao P (2021) Hot tearing behavior of Mg-4Zn-xSn-0.6Zr Alloys. Int J Metalcast 15:292–305. https://doi.org/10.1007/s40962-020-00464-9

    Article  CAS  Google Scholar 

  183. Zhang T, Yu W, Ma C, Chen W, Zhang L, Xiong S (2022) The effect of different high pressure die casting parameters on 3D microstructure and mechanical properties of AE44 magnesium alloy. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.05.001

    Article  Google Scholar 

  184. Li Z, Li D, Zhou W et al (2022) Characterization on the formation of porosity and tensile properties prediction in die casting Mg alloys. J Magnes Alloys 10:1857–1867. https://doi.org/10.1016/j.jma.2020.12.006

    Article  CAS  Google Scholar 

  185. Song J, Zhao H, Liao J et al (2022) Comparison on hot tearing behavior of binary Mg–Al, Mg–Y, Mg–Gd, Mg–Zn, and Mg–Ca alloys. Metall Mater Trans A 53:2986–3001. https://doi.org/10.1007/s11661-022-06719-w

    Article  CAS  Google Scholar 

  186. Ma C, Wenbo Y, Zhang T, Zhang Z, Ma Y, Xiong S (2021) The effect of slow shot speed and casting pressure on the 3D microstructure of high pressure die casting AE44 magnesium alloy. J Magnes Alloys. https://doi.org/10.1016/j.jma.2021.09.011

    Article  Google Scholar 

  187. Li X, Yu W, Wang J, Xiong S (2018) Influence of melt flow in the gating system on microstructure and mechanical properties of high pressure die casting AZ91D magnesium alloy. Mater Sci Eng A 736:219–227. https://doi.org/10.1016/j.msea.2018.08.090

    Article  CAS  Google Scholar 

  188. Li X, Xiong S, Guo Z (2016) Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy. J Mater Process Technol 231:1–7. https://doi.org/10.1016/j.jmatprotec.2015.12.005

    Article  CAS  Google Scholar 

  189. Zhong H, Lin Z, Han Q et al (2023) Hot tearing behavior of AZ91D magnesium alloy. J Magnes Alloys. https://doi.org/10.1016/j.jma.2023.02.010

    Article  Google Scholar 

  190. Clyne TW, Brit GJD (1981) The influence of composition on solidification cracking susceptibility in binary alloy systems. Mater Phys 74:65–73

    Google Scholar 

  191. Pellini W (1952) Strain theory of hot tearing. Foundry 80:125–199

    Google Scholar 

  192. Zhao H, Song J, Jiang B et al (2021) The effect of Sr addition on hot tearing susceptibility of Mg-1Ca-xSr alloys. J Mater Eng Perform 30:7645–7654. https://doi.org/10.1007/s11665-021-05925-8

    Article  CAS  Google Scholar 

  193. Huang H, Fu P-h, Wang Y-x, Peng L-m, Jiang H-y (2014) Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg–3Nd–0.2 Zn–Zr Mg alloys. Trans Nonferrous Metals Soc China 24:922–929. https://doi.org/10.1016/S1003-6326(14)63144-7

    Article  CAS  Google Scholar 

  194. Su X, Huang J, Du X, An R, Wang F, Lou Y (2021) Influence of a low-frequency alternating magnetic field on hot tearing susceptibility of EV31 magnesium alloy. China Foundry 18:229–238. https://doi.org/10.1007/s41230-021-1011-0

    Article  Google Scholar 

  195. Du X, Wang F, Bai S et al (2023) Effect of low-frequency alternating magnetic field strength on hot tearing susceptibility of AXJ530 alloy. Int J Metalcast 17:2017–2029. https://doi.org/10.1007/s40962-022-00911-9

    Article  CAS  Google Scholar 

  196. Koltun P, Tharumarajah A (2009) Life cycle environmental impact of magnesium instrument panel. Mater Sci Forum 618–619:17–20. https://doi.org/10.4028/www.scientific.net/MSF.618-619.17

    Article  Google Scholar 

  197. Liu B, Qiu ZC, Yang Q, Wang K, Wu XH (2017) Optimized design of aluminum cross car beam (CCB) based in modal strain energy analysis. Mater Sci Forum 877:668–673. https://doi.org/10.4028/www.scientific.net/MSF.877.668

    Article  Google Scholar 

  198. Joost W, Krajewski J, Paul E (2017) Towards magnesium alloys for high-volume automotive applications. Scripta Mater 128:107–112. https://doi.org/10.1016/j.scriptamat.2016.07.035

    Article  CAS  Google Scholar 

  199. Polmear I (1994) Magnesium alloys and applications. Mater Sci Technol 10:1–16. https://doi.org/10.1179/mst.1994.10.1.1

    Article  CAS  Google Scholar 

  200. Aghion E, Bronfín B, Buch FV, Schumann S, Friedrich H (2003) Newly developed magnesium alloys for powertrain applications. Springer-, Cham, 55:30–33. https://doi.org/10.1007/S11837-003-0206-8

  201. Novotny S, Geiger M (2003) Process design for hydroforming of lightweight metal sheets at elevated temperatures. J Mater Process Tech 138:594–599. https://doi.org/10.1016/S0924-0136(03)00042-6

    Article  CAS  Google Scholar 

  202. Liu B, Yang J, Zhang X, Yang Q, Zhang J, Li X (2023) Development and application of magnesium alloy parts for automotive OEMs: a review. J Magnes Alloys 11:15–47. https://doi.org/10.1016/j.jma.2022.12.015

    Article  CAS  Google Scholar 

  203. Nayak S, Garg AK, Chaturvedi M, Wieczorek T, Marks M (2010) Performance evaluation of PU over-molded thermoplastic steering wheel. SAE Technical Paper 1:7. https://doi.org/10.4271/2010-01-0916

    Article  Google Scholar 

  204. Garg A, Surisetty G, Chaturvedi M, Jaarda E (2009) High performance thermoplastic steering wheel 1:7. SAE Technical Papers. https://doi.org/10.4271/2009-26-0074

    Article  Google Scholar 

  205. Ames W, Altenhof W (2000) Observations of the relative performance of magnesium and aluminum steering wheel skeletons with identical geometry. SAE Trans 109:390–399. https://doi.org/10.4271/2000-01-0784

    Article  Google Scholar 

  206. Mao P-L, Zheng L, C-y WANG et al (2008) Fatigue behavior of magnesium alloy and application in auto steering wheel frame. Trans Nonferrous Metals Soc China 18:s218–s222. https://doi.org/10.1016/S1003-6326(10)60206-3

    Article  CAS  Google Scholar 

  207. Wickberg A, Ericsson R (1985) Magnesium in the Volvo LCP 2000. SAE Technical Papers 1:12. https://doi.org/10.4271/850418

    Article  Google Scholar 

  208. Chen X, Wagner D, Heath G, Mehta S, Uicker J (2021) Cast magnesium subframe development-bolt load retention.·SAE Technical Paper 1:8. https://doi.org/10.4271/2021-01-0274

  209. Luo AA (2013) Magnesium casting technology for structural applications. J Magnes Alloys 1:2–22. https://doi.org/10.1016/j.jma.2013.02.002

  210. News CNM https://www.cnmn.com.cn/ShowNews1.aspx?id=445932. Accessed 6 October 2023.

  211. Zheng J, Yan Z, Ji J et al (2022) Effect of heat treatment on mechanical properties and microstructure evolution of Mg-9.5Gd-4Y-2.2Zn-0.5Zr alloy. J Magnes Alloys 10:1124–1132. https://doi.org/10.1016/j.jma.2021.05.018

    Article  CAS  Google Scholar 

  212. Graf G, Spoerk-Erdely P, Maawad E et al (2023) Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn (AZ91) alloy. J Magnes Alloys 11:1944–1958. https://doi.org/10.1016/j.jma.2023.05.012

    Article  CAS  Google Scholar 

  213. Liu J (2016) Reseach on solidfication behavior of magnesium alloy during centrifugal casting and forming of large ring. PhD Dissertation, Chongqing University.

  214. Alloys WoHBL. http://www.alloymg.com/mgjzmb.html. Accessed 7 October 2023.

  215. Zou Q, Le Q, Ren L et al (2023) Corrosion behaviour of magnesium alloy AZ80 alloyed with Nd in simulated concrete pore solutions. J Market Res 25:5964–5981. https://doi.org/10.1016/j.jmrt.2023.07.082

    Article  CAS  Google Scholar 

  216. Wang D, Wang Y, Wang J et al (2022) Corrosion resistance of Mg-Al-Zn magnesium alloy concrete formwork in Portland cement paste. Constr Build Mater 325:126745. https://doi.org/10.1016/j.conbuildmat.2022.126745

    Article  CAS  Google Scholar 

  217. Wang Y, Xiao W, Ma K, Dai C, Wang D, Wang J (2023) A new design strategy for the crack-free composite CaHPO4· 2H2O/CaCO3 coating on AZ41 Mg alloy for magnesium concrete formwork. Surf Coat Technol 468:129784. https://doi.org/10.1016/j.surfcoat.2023.129784

    Article  CAS  Google Scholar 

  218. Wang Y, Wu G (2021) Improving corrosion resistance of magnesium alloy in Cl-containing simulated concrete pore solution by ultrasound-assisted chemical deposition. Scanning 2021:5462741. https://doi.org/10.1155/2021/5462741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Darimont G, Cloots R, Heinen E, Seidel L, Legrand R (2002) In vivo behaviour of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials 23:2569–2575. https://doi.org/10.1016/S0142-9612(01)00392-1

    Article  CAS  PubMed  Google Scholar 

  220. Song Y, Xu Z, Dong K, Shan D, Han E-H (2019) Investigation of microcracks on conversion film of AZ80 Mg alloy. Surf Eng 35:527–535. https://doi.org/10.1080/02670844.2018.1507292

    Article  CAS  Google Scholar 

  221. Liao G, Wu G, Liu W, et al. (2022) Microstructure evolution and enhanced fatigue behavior in the Mg-10Li-5Zn-0.5Er alloys micro-alloyed with Yb. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.07.017

  222. Association IM (2008) Magnesium’s Tough Strength Endures Abuse to Protect Portable Electronic Devices. International Magnesium Association.

  223. Yuan S, Wang J, Li X, Ma H, Zhang L, Jin P (2022) Enhanced mechanical properties of Mg-1Al-12Y alloy containing long period stacking ordered phase. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.03.005

    Article  Google Scholar 

  224. Chen Q, Chen R, Su J et al (2022) The mechanisms of grain growth of Mg alloys: a review. J Magnes Alloys 10:2384–2397. https://doi.org/10.1016/j.jma.2022.09.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (Grant Numbers 2022YFB3709300 and 2021YFB3701000), and the National Natural Science Foundation of China (Grant Numbers 52271090, 52071036, U2037601, and U21A2048)

Author information

Authors and Affiliations

Authors

Contributions

Hecong Xie took part in writing—original draft preparation. Hua Zhao participated in writing. Xin Guo, Yongfeng Li, and Hengrui Hu were responsible for modification. Jiangfeng Song reviewed and edited the article. Bin Jiang and Fusheng Pan administered the project and acquired the funding.

Corresponding authors

Correspondence to Jiangfeng Song or Fusheng Pan.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Zhao, H., Guo, X. et al. Recent progress on cast magnesium alloy and components. J Mater Sci 59, 9969–10002 (2024). https://doi.org/10.1007/s10853-024-09459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09459-x