Abstract
A separable cubic model, for smooth unconstrained minimization, is proposed and evaluated. The cubic model uses some novel secant-type choices for the parameters in the cubic terms. A suitable hard-case-free trust-region strategy that takes advantage of the separable cubic modeling is also presented. For the convergence analysis of our specialized trust region strategy we present as a general framework a model \(q\)-order trust region algorithm with variable metric and we prove its convergence to \(q\)-stationary points. Some preliminary numerical examples are also presented to illustrate the tendency of the specialized trust region algorithm, when combined with our cubic modeling, to escape from local minimizers.
Similar content being viewed by others
References
Benson, H.Y., Shanno, D.F.: Interior-point methods for nonconvex nonlinear programming: cubic regularization. Comput. Optim. Appl. 58, 323–346 (2014)
Bianconcini, T., Liuzzi, G., Morini, B., Sciandrone, M.: On the use of iterative methods in cubic regularization for unconstrained optimization. Comput. Optim. Appl. 60, 35–57 (2015)
Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)
Birgin, E.G., Martínez, J.M., Raydan, M.: Spectral projected gradient methods. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, vol. Chapter 19, 2nd edn, pp. 3652–3659. Springer, Berlin (2009)
Birgin, E.G., Martínez, J.M., Raydan, M.: Spectral Projected Gradient methods: Review and Perspectives. J. Stat. Softw. 60(3) (2014)
Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. Ser. A 127, 245–295 (2011)
Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity. Math. Program. Ser. A 130, 295–319 (2011)
Cartis, C., Gould, N.I.M., Toint, PhL: On the evaluation complexity of cubic regularization methods for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear optimization. SIAM J. Opt. 23, 1553–1574 (2013)
Corradi, G.: A trust region algorithm for unconstrained optimization. Int. J. Comput. Math. 65, 109–119 (1997)
Conn, A.R., Gould, N.I.M., Toint, PhL: Trust-Region Methods. SIAM, Philadelphia (2000)
Dennis Jr, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996). Revised edition
Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1987)
Gay, D.M.: Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 2, 186–197 (1981)
Griewank, A.: The modification of Newtons method for unconstrained optimization by bounding cubic terms, Technical Report NA/12. Department of Applied Mathematics and Theoretical Physics, University of Cambridge (1981)
Gould, N.I.M., Porcelli, M., Toint, PhL: Updating the regularization parameter in the adaptive cubic regularization algorithm. Comput. Optim. Appl. 53, 1–22 (2012)
Hanson, R.J., Krogh, F.T.: A quadratic-tensor model algorithm for nonlinear least-squares problems with linear constraints. ACM Trans. Math. Softw. 18, 115–133 (1992)
Karas, E.W., Santos, S.A., Svaiter, B.F.: Algebraic rules for quadratic regularization of Newton’s method. Comput. Optim. Appl. (2014). doi:10.1007/s10589-014-9671-y
Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)
Lu, S., Wei, Z., Li, L.: A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization. Comput. Optim. Appl. 51, 551–573 (2012)
Martínez, J.M., Santos, S.A.: Métodos Computacionais de Otimização. Editorial IMPA, Rio de Janeiro, Brazil (1995)
Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009)
Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)
Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton’s method and its global performance. Math. Program. 108(1), 177–205 (2006)
Nesterov, Y.: Accelerating the cubic regularization of Newton’s method on convex problems. Math. Program. Ser. B 112, 159–181 (2008)
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)
Schnabel, R.B., Chow, T.-T.: Tensor methods for unconstrained optimization using second derivatives. SIAM J. Opt. 1, 293–315 (1991)
Schnabel, R.B., Frank, P.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21, 815–843 (1984)
Wang, Z.-H., Yuan, Y.-X.: A subspace implementation of quasi-Newton trust region methods for unconstrained optimization. Numer. Math. 104, 241–269 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by PRONEX-CNPq/FAPERJ (E-26/111.449/2010-APQ1), CEPID–Industrial Mathematics/FAPESP (Grant 2011/51305-02), FAPESP (Projects 2013/05475-7 and 2013/07375-0), and CNPq (Project 400926/2013-0).
Rights and permissions
About this article
Cite this article
Martínez, J.M., Raydan, M. Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization. J Glob Optim 63, 319–342 (2015). https://doi.org/10.1007/s10898-015-0278-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-015-0278-3