Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A separable cubic model, for smooth unconstrained minimization, is proposed and evaluated. The cubic model uses some novel secant-type choices for the parameters in the cubic terms. A suitable hard-case-free trust-region strategy that takes advantage of the separable cubic modeling is also presented. For the convergence analysis of our specialized trust region strategy we present as a general framework a model \(q\)-order trust region algorithm with variable metric and we prove its convergence to \(q\)-stationary points. Some preliminary numerical examples are also presented to illustrate the tendency of the specialized trust region algorithm, when combined with our cubic modeling, to escape from local minimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benson, H.Y., Shanno, D.F.: Interior-point methods for nonconvex nonlinear programming: cubic regularization. Comput. Optim. Appl. 58, 323–346 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bianconcini, T., Liuzzi, G., Morini, B., Sciandrone, M.: On the use of iterative methods in cubic regularization for unconstrained optimization. Comput. Optim. Appl. 60, 35–57 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Birgin, E.G., Martínez, J.M., Raydan, M.: Spectral projected gradient methods. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, vol. Chapter 19, 2nd edn, pp. 3652–3659. Springer, Berlin (2009)

    Chapter  Google Scholar 

  5. Birgin, E.G., Martínez, J.M., Raydan, M.: Spectral Projected Gradient methods: Review and Perspectives. J. Stat. Softw. 60(3) (2014)

  6. Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. Ser. A 127, 245–295 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cartis, C., Gould, N.I.M., Toint, PhL: Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity. Math. Program. Ser. A 130, 295–319 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cartis, C., Gould, N.I.M., Toint, PhL: On the evaluation complexity of cubic regularization methods for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear optimization. SIAM J. Opt. 23, 1553–1574 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Corradi, G.: A trust region algorithm for unconstrained optimization. Int. J. Comput. Math. 65, 109–119 (1997)

    Article  MathSciNet  Google Scholar 

  10. Conn, A.R., Gould, N.I.M., Toint, PhL: Trust-Region Methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  11. Dennis Jr, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996). Revised edition

    Book  MATH  Google Scholar 

  12. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1987)

    MATH  Google Scholar 

  13. Gay, D.M.: Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 2, 186–197 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Griewank, A.: The modification of Newtons method for unconstrained optimization by bounding cubic terms, Technical Report NA/12. Department of Applied Mathematics and Theoretical Physics, University of Cambridge (1981)

  15. Gould, N.I.M., Porcelli, M., Toint, PhL: Updating the regularization parameter in the adaptive cubic regularization algorithm. Comput. Optim. Appl. 53, 1–22 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hanson, R.J., Krogh, F.T.: A quadratic-tensor model algorithm for nonlinear least-squares problems with linear constraints. ACM Trans. Math. Softw. 18, 115–133 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karas, E.W., Santos, S.A., Svaiter, B.F.: Algebraic rules for quadratic regularization of Newton’s method. Comput. Optim. Appl. (2014). doi:10.1007/s10589-014-9671-y

  18. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  19. Lu, S., Wei, Z., Li, L.: A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization. Comput. Optim. Appl. 51, 551–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Martínez, J.M., Santos, S.A.: Métodos Computacionais de Otimização. Editorial IMPA, Rio de Janeiro, Brazil (1995)

    Google Scholar 

  21. Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009)

    Article  Google Scholar 

  22. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)

    Article  MATH  Google Scholar 

  23. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton’s method and its global performance. Math. Program. 108(1), 177–205 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nesterov, Y.: Accelerating the cubic regularization of Newton’s method on convex problems. Math. Program. Ser. B 112, 159–181 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  26. Schnabel, R.B., Chow, T.-T.: Tensor methods for unconstrained optimization using second derivatives. SIAM J. Opt. 1, 293–315 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schnabel, R.B., Frank, P.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21, 815–843 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, Z.-H., Yuan, Y.-X.: A subspace implementation of quasi-Newton trust region methods for unconstrained optimization. Numer. Math. 104, 241–269 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raydan.

Additional information

This work was supported by PRONEX-CNPq/FAPERJ (E-26/111.449/2010-APQ1), CEPID–Industrial Mathematics/FAPESP (Grant 2011/51305-02), FAPESP (Projects 2013/05475-7 and 2013/07375-0), and CNPq (Project 400926/2013-0).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, J.M., Raydan, M. Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization. J Glob Optim 63, 319–342 (2015). https://doi.org/10.1007/s10898-015-0278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0278-3

Keywords