Abstract
We derive thermodynamically consistent models for diblock copolymer solutions coupled with the electric and magnetic field, respectively. These models satisfy the second law of thermodynamics and are therefore thermodynamically consistent. We then design a set of 2nd order, linear, semi-discrete schemes for the models using the energy quadratization method and the supplementary variable method, respectively, which preserve energy dissipation rates of the models. The spatial discretization is carried out subsequently using 2nd order finite difference methods, leading to fully discrete, energy-dissipation-rate preserving algorithms that are thermodynamically consistent. Convergence rates are numerically confirmed through mesh refinement tests and several numerical examples are given to demonstrate the role of mobility in pattern formation, defect removing effect of both electric and magnetic fields as well as the hysteresis effect with respect to applied external fields in copolymer solutions.
Similar content being viewed by others
References
Badia, S., Guillén-González, F., Gutiérrez-Santacreu, J.V.: Finite element approximation of nematic liquid crystal flows using a saddle-point structure. J. Comput. Phys. 230(41), 1686–1706 (2011)
Böker, A., Elbs, H., Hänsel, H., Knoll, A., Ludwigs, S., Zettl, H., Zvelindovsky, A.V., Sevink, G.J.A., Urban, V., Abetz, V., Müller, A.H.E., Krausch, G.: Electric field induced alignment of concentrated block copolymer solutions. Macromolecules 36(21), 8078–8087 (2003)
Chen, C., Li, X., Zhang, J., Yang, X.: Efficient linear, decoupled, and unconditionally stable scheme for a ternary Cahn-Hilliard type Nakazawa-Ohta phase-field model for tri-block copolymers. Appl. Math. Comput. 388(1), 125463 (2020)
Chen, C., Zhang, J., Yang, X.: Efficient numerical scheme for a new hydrodynamically-coupled conserved Allen-Cahn type Ohta-Kawaski phase-field model for diblock copolymer melt. Comput. Phys. Commun. 256, 107418 (2020)
Cheng, Q., Liu, C., Shen, J.: A new Lagrange multiplier approach for gradient flows. Comput. Methods Appl. Mech. Eng. 367, 113070 (2020)
Cheng, Q., Yang, X., Shen, J.: Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model. J. Comput. Phys. 341, 44–60 (2017)
Choksi, R., Maras, M., Williams, J.F.: 2D phase diagram for minimizers of a Cahn-Hilliard functional with long-range interactions. Siam J. Appl. Dyn. Syst. 10(4), 1344–1362 (2011)
Choksi, R., Peletier, M.A., Williams, J.F.: On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn-Hilliard functional. Siam J. Appl. Math. 69(6), 1712–1738 (2009)
Choksi, R., Ren, X.: On the derivation of a density functional theory for microphase separation of diblock copolymers. J. Stat. Phys. 113(1–2), 151–176 (2003)
Choksi, R., Ren, X.: Diblock copolymer/homopolymer blends: derivation of a density functional theory. Physica D 203(1–2), 100–119 (2005)
Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)
Faghihi, N., Mkhonta, S., Elder, K.R., Grant, M.: Magnetic islands modelled by a phase-field-crystal approach. Eur. Phys. J. B 91, 55 (2018)
Gong, Y., Hong, Q., Wang, Q.: Supplementary variable method for thermodynamically consistent partial differential equations. Comput. Methods Appl. Mech. Eng. 381, 113746 (2021)
Guillén-González, F., Tierra, G.: On linear schemes for a Cahn-Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)
Guillén-González, F., Tierra, G.: Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models. Comput. Math. Appl. 68(8), 821–846 (2013)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration Structure-preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)
Hamley, I.W.: The Physics of Block Copolymers. Oxford University Press, Oxford (1998)
Hamley, I.W.: Developments in Block Copolymer Science and Technology. Wiley, New York (2004)
Hamley, I.W.: Block copolymers in solution: fundamentals and applications. Wiley, New York (2005)
Hong, Q., Li, J., Wang, Q.: Supplementary variable method for structure-preserving approximations to partial differential equations with deduced equations. Appl. Math. Lett. 110, 106576 (2020)
Landau, L.D., Mikhaílovich Lifshitz, E.: Electrodynamics of Continuous Media. Elsevier, Amsterdam (1984)
Ly, D.Q., Makatsoris, C.: Effects of the homopolymer molecular weight on a diblock copolymer in a 3D spherical confinement. BMC Chem. 13(1), 24 (2019)
Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 2621–2632 (1986)
Ohta, T., Nonomura, M.: Elastic property of bilayer membrane in copolymer-homopolymer mixtures. Eur. Phys. J. B 2(1), 57–68 (1998)
Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)
Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)
Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505–1512 (1953)
Orizaga, S., Glasner, K.: Instability and reorientation of block copolymer microstructure by imposed electric fields. Phys. Rev. E. 93(5), 052504 (2016)
Pestera, C.W., Liedel, C., Ruppel, M., Böker, A.: Block copolymers in electric fields. Prog. Polym. Sci. 64, 182–214 (2017)
Pinna, M., Schreier, L., Zvelindovsky, A.V.: Mechanisms of electric-field-induced alignment of block copolymer lamellae. Soft Matter 5, 970–973 (2009)
Seymour, M., Sanches, F., Elde, K., Provatas, N.: Phase-field crystal approach for modeling the role of microstructure in multiferroic composite materials. Phys. Rev. E 92, 184109 (2015)
Shen, J., Jie, X., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)
Shen, J., Jie, X., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. Siam Rev. 61(3), 474–506 (2019)
Shirokoff, D., Choksi, R., Nave, J.-C.: Sufficient conditions for global minimality of metastable states in a class of non-convex functionals: a simple approach via quadratic lower bounds. J. Nonlinear Sci. 25(3), 539–582 (2015)
van den Berg, J.B., Williams, J.F.: Validation of the bifurcation diagram in the 2D Ohta-Kawasaki problem. Nonlinearty 30(4), 1584–1638 (2017)
van den Berg, B., Jan, Williams J.F: Rigorously computing symmetric stationary states of the Ohta-Kawasaki problem in three dimensions. Siam J. Math. Aanl. 51(1), 131–158 (2019)
Wang, Q.: Generalized onsager principle and its applications, Chapter 3. In: Xiangyang, L. (ed.) Frontiers and Progress of Current Soft Matter Research. Springer, Singapore (2021)
Wu, J., Wang, Z., Yin, Y., Jiang, R., Li, B., Shi, A.C.: A simulation study of phase behavior of double-hydrophilic block copolymers in aqueous solutions. Macromolecules 48(24), 8897–8906 (2014)
Xiangfa, W., Dzenis, Y.A.: Phase-field modeling of the formation of lamellar nanostructures in diblock copolymer thin films under inplanar electric fields. Phys. Rev. E. 77(511), 031807 (2008)
Xu, T., Zvelindovsky, A.V., Sevink, G.J., Gang, O., Ocko, B., Zhu, Y., Gido, S.P., Russell, T.P.: Electric field induced sphere-to-cylinder transition in diblock copolymer thin films. Macromolecules 37(18), 6980–6984 (2004)
Xu, T., Zvelindovsky, A.V., Sevink, G.J., Gang, O., Ocko, B., Zhu, Y., Gido, S.P., Russell, T.P.: Electric field alignment of asymmetric diblock copolymer thin films. Macromolecules 38(26), 10788–10798 (2005)
Yamada, K., Kawabata, E.Y.Y., Kato, T.O.T.: Mesoscopic simulation of phase behaviors and structures in an amphiphile-solvent system. Phys. Rev. E 89(6), 062310 (2014)
Yang, X., Zhao, J.: On linear and unconditionally energy stable algorithms for variable mobility Cahn-Hilliard equation with logarithmic Flory-Huggins potential. Comm. Comp. Phys. 25, 703–728 (2019)
Yang, X., Li, J., Gregory Forest, M., Wang, Q.: Hydrodynamic theories for flows of active liquid crystals and the Generalized Onsager principle. Entropy 18(6), 202 (2016)
Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. J. Comput. Phys. 404, 109121 (2020)
Yin, J., Wang, Y., Chen, J.Z., Zhang, P., Zhang, L.: Construction of a pathway map on a complicated energy landscape. Phys. Rev. Lett. 124(9), 090601 (2020)
Yu, B., Zhang, L.: Global optimization-based dimer method for finding saddle points. Discrete Cont. Dyn.-B 26(1), 741–753 (2021)
Zhang, J., Chen, C., Yang, X.: Efficient and energy stable method for the Cahn-Hilliard phase-field model for diblock copolymers. Appl. Numer. Math. 151, 263–281 (2020)
Zhang, J., Chen, C., Yang, X., Pan, K.: Efficient numerical scheme for a penalized Allen-Cahn type Ohta-Kawasaki phase-field model for diblock copolymers. J. Comput. Appl. Math. 378, 112905 (2020)
Zhang, J., Yang, X.: A new magnetic-coupled Cahn-Hilliard phase-field model for diblock copolymers and its numerical approximations. Appl. Math. Lett. 107, 106412 (2020)
Zhao, J., Yang, X., Gong, Y., Zhao, X., Yang, X., Li, J., Wang, Q.: A general strategy for numerical approximations of non-equilibrium models-part i: thermodynamical systems. Int. J. Numer. Anal. Mod. 15(6), 884–918 (2018)
Acknowledgements
Research at CSRC is partially supported by the National Natural Science Foundation of China (award 11971051 and NSAF-U1930402). Qi Wang’s research is partially supported by a DOE grant (DE-SC0020272), National Science Foundation grants (award DMS-1815921 and OIA-1655740) and a GEAR award from SC EPSCoR/IDeA Program.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shen, X., Wang, Q. Thermodynamically Consistent Algorithms for Models of Diblock Copolymer Solutions Interacting with Electric and Magnetic Fields. J Sci Comput 88, 43 (2021). https://doi.org/10.1007/s10915-021-01470-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01470-7