Abstract
In this paper, we propose an algorithm to find subgraphs with given properties in large social networks. A computational experiment that confirms the effectiveness of the proposed algorithm is presented.
Similar content being viewed by others
References
T. V. Batura, “Methods of analysis of computer social networks,” Vestn. NGU, Ser. Inform. Technol., 10, No. 4, 13–28 (2012).
V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “The Louvain method for community detection in large networks,” J. Stat. Mech. Theory Exp., 108–121 (2008).
A. N. Churakov, “Social network analysis,” SocIs, 1, 109–121 (2001).
A. Clauset, M. E. Newman, and C. Moore, “Finding community structure in very large networks,” Phys. Rev., E 70, 066111 (2004).
S. Fortunato, “Community detection in graphs,” Phys. Rep., 486, 75–174 (2010).
M. Girvan and M. E. Newman, “Community structure in social and biological networks,” Proc. Natl. Acad. Sci. USA, 99, 7821–7826 (2002).
R. Guimera, M. Sales-Pardo, and L. A. N. Amaral, “Modularity from fluctuations in random graphs and complex networks,” Phys. Rev., E 70, 025101 (2004).
R. Lambiotte and M. Rosvall, “Ranking and clustering of nodes in networks with smart teleportation,” Phys. Rev., E 85, 1103–1012 (2012).
A. Lancichinetti and S. Fortunato, “Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities,” Phys. Rev., E 80, 016118 (2009).
A. Lancichinetti and S. Fortunato, “Community detection algorithms: a comparative analysis,” Phys. Rev., E 80, 056117 (2009).
A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing community detection algorithms,” Phys. Rev., E 78, 046110 (2008).
L. Lovasz, “Random walks on graphs: a survey,” in: D. Miklós, V. T. Sós, and T. Sz\( \overset{^{{\prime\prime} }}{\mathrm{o}} \)nyi, eds., Combinatorics, Paul Erd \( \overset{^{{\prime\prime} }}{o} \) s is Eighty, Bolyai Soc. Math. Stud., Vol. 2, Budapest (1996), pp. 1–46.
C. P. Massen and J. P. K. Doye, “Identifying communities within energy landscapes,” Phys. Rev., E 71, 046101 (2005).
M. E. Newman, “Fast algorithm for detecting community structure in networks,” Phys. Rev., E 69, 066133 (2004).
M. E. Newman, “Modularity and community structure in networks,” Proc. Natl. Acad. Sci. USA, 103, 8577–8582 (2006).
M. E. Newman, Networks: An Introduction, Oxford Univ. Press, Oxford (2010).
M. E. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Phys. Rev., E 69, 026113 (2004).
F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defining and identifying communities in networks,” Proc. Natl. Acad. Sci. USA, 101, 2658–2663 (2004).
M. Rosvall, D. Axelsson, and C. T. Bergstrom, “The map equation,” Eur. Phys. J. Special Topics, 178, No. 1, 13–23 (2009).
M. Rosvall and C. T. Bergstrom, “An information-theoretic framework for resolving community structure in complex networks,” Proc. Natl. Acad. Sci. USA, 104, No. 18, 7327–7331 (2007).
M. Rosvall and C. T. Bergstrom, “Maps of information flow reveal community structure in complex networks,” Proc. Natl. Acad. Sci. USA, 105, No. 4, 1118–1123 (2008).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 19, No. 1, pp. 21–32, 2014.
Rights and permissions
About this article
Cite this article
Kolomeychenko, M.I., Chepovskiy, A.A. & Chepovskiy, A.M. An Algorithm for Detecting Communities in Social Networks. J Math Sci 211, 310–318 (2015). https://doi.org/10.1007/s10958-015-2607-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-015-2607-y