Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Matrix spectral factorization for SA4 multiwavelet

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

A Correction to this article was published on 16 October 2018

This article has been updated

Abstract

In this paper, we investigate Bauer’s method for the matrix spectral factorization of an r-channel matrix product filter which is a half-band autocorrelation matrix. We regularize the resulting matrix spectral factors by an averaging approach and by multiplication by a unitary matrix. This leads to the approximate and exact orthogonal SA4 multiscaling functions. We also find the corresponding orthogonal multiwavelet functions, based on the QR decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Change history

  • 16 October 2018

    After a careful review of the published version of our paper, we discovered that some references to the number of multiwavelet decomposition and reconstruction levels are incorrect.

  • 16 October 2018

    After a careful review of the published version of our paper, we discovered that some references to the number of multiwavelet decomposition and reconstruction levels are incorrect.

References

  • Abdou, A., Turcu, F., Grivel, E., Diversi, R., & Ferré, G. (2015). Identifying an autoregressive process disturbed by a moving-average noise using inner–outer factorization. Signal, Image and Video Processing, 9(1), 235–244.

    Article  Google Scholar 

  • Aliev, F., Bordyug, B. A., & Larin, V. (1992). Discrete generalized algebraic Riccati equations and polynomial matrix factorization. Systems & Control Letters, 18(1), 49–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Avelli, D. N., & Trentelman, H. (2008). Algorithms for multidimensional spectral factorization and sum of squares. In Special issue devoted to selected papers presented at the 13th conference of the international linear algebra society. Linear algebra and its applications, vol. 429, no. 5, pp. 1114–1134.

  • Averbuch, A. Z., Zheludev, V. A., & Cohen, T. (2007). Multiwavelet frames in signal space originated from Hermite splines. IEEE Transactions on Signal Processing, 55(3), 797–808.

    Article  MathSciNet  MATH  Google Scholar 

  • Baggio, G. (2014). Spectral factorization of rational matrix valued functions. Master’s thesis, University of Padova.

  • Baggio, G., & Ferrante, A. (2016). On minimal spectral factors with zeroes and poles lying on prescribed regions. IEEE Transactions on Automatic Control, 61(8), 2251–2255.

    Article  MathSciNet  MATH  Google Scholar 

  • Baggio, G., & Ferrante, A. (2016). On the factorization of rational discrete-time spectral densities. IEEE Transactions on Automatic Control, 61(4), 969–981.

    Article  MathSciNet  MATH  Google Scholar 

  • Bart, H., Gohberg, I., & Kaashoek, M. (1979). Minimal factorization of matrix and operator functions. Operator theory: Advances and applications. Basel: Birkhäuser.

    Book  MATH  Google Scholar 

  • Bauer, F.L. (1956). Beiträge zur Entwicklung numerischer Verfahren für programmgesteuerte Rechenanlagen. II. Direkte Faktorisierung eines Polynoms. Bayer. Akad. Wiss. Math.-Nat. Kl. S.-B. 1956, 163–203 (1957)

  • Bose, N. K. (2017). Applied multidimensional systems theory (2nd ed.). Basel, Switzerland: Springer International Publishing.

    Book  MATH  Google Scholar 

  • Charoenlarpnopparut, C. (2007). One-dimensional and multidimensional spectral factorization using Gröbner basis approach. In 2007 Asia–Pacific conference on communications (pp. 201–204).

  • Cheung, K. W., & Po, L. M. (2001). Integer multiwavelet transform for lossless image coding. In Proceedings of 2001 international symposium on intelligent multimedia, video and speech processing, 2001 (pp. 117–120).

  • Chui, C. K., & Lian, J. A. (1996). A study of orthonormal multi-wavelets (Selected keynote papers presented at 14th IMACS World Congress, Atlanta, 1994). Applied Numerical Mathematics, 20(3), 273–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen, A., Daubechies, I., & Plonka, G. (1997). Regularity of refinable function vectors. Journal of Fourier Analysis and Applications, 3(3), 295–324.

    Article  MathSciNet  MATH  Google Scholar 

  • Cooklev, T., Nishihara, A., Kato, M., Sablatash, M. (1996). Two-channel multifilter banks and multiwavelets. In IEEE international conference on acoustics, speech, and signal processing conference proceedings ICASSP-96 (vol. 5, pp. 2769–2772).

  • Cotronei, M., Montefusco, L. B., & Puccio, L. (1998). Multiwavelet analysis and signal processing. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45(8), 970–987.

    Article  MATH  Google Scholar 

  • Davis, J. H. (2002). Foundations of deterministic and stochastic control. Basel: Birkhäuser.

    Book  MATH  Google Scholar 

  • Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3), 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  • Donovan, G. C., Geronimo, J. S., Hardin, D. P., & Massopust, P. R. (1996). Construction of orthogonal wavelets using fractal interpolation functions. The SIAM Journal on Mathematical Analysis, 27(4), 1158–1192.

    Article  MathSciNet  MATH  Google Scholar 

  • Downie, T. R., & Silverman, B. W. (1998). The discrete multiple wavelet transform and thresholding methods. IEEE Transactions on Signal Processing, 46(9), 2558–2561.

    Article  Google Scholar 

  • Du, B., Xu, X., & Dai, X. (2013). Minimum-phase FIR precoder design for multicasting over MIMO frequency-selective channels. Journal of Electronics (China), 30(4), 319–327.

    Article  Google Scholar 

  • Ephremidze, L., Janashia, G., & Lagvilava, E. (2009). A simple proof of the matrix-valued Fejér-Riesz theorem. Journal of Fourier Analysis and Applications, 15(1), 124–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Ephremidze, L., Saied, F., & Spitkovsky, I. (2016). On algorithmization of Janashia–Lagvilava matrix spectral factorization method. IEEE Transactions on Information Theory. arXiv:1606.04909 (submitted).

  • Ferrante, A., & Picci, G. (2017). Representation and factorization of discrete-time rational all-pass functions. IEEE Transactions on Automatic Control, 62(7), 3262–3276.

    Article  MathSciNet  MATH  Google Scholar 

  • Fischer, R. F. (2005). Sorted spectral factorization of matrix polynomials in MIMO communications. IEEE Transactions on Communications, 53(6), 945–951.

    Article  Google Scholar 

  • Gan, L., & Ma, K. K. (2005). On minimal lattice factorizations of symmetric–antisymmetric multifilterbanks. IEEE Transactions on Signal Processing, 53(2, part 1), 606–621.

    Article  MathSciNet  MATH  Google Scholar 

  • Geronimo, J. S., Hardin, D. P., & Massopust, P. R. (1994). Fractal functions and wavelet expansions based on several scaling functions. The Journal of Approximation Theory, 78(3), 373–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Golub, G. H., & Van Loan, C. F. (2013). Matrix computations. Johns Hopkins studies in the mathematical sciences (4th ed.). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Grinshpan, A., Kaliuzhnyi-Verbovetskyi, D. S., Vinnikov, V., & Woerdeman, H. J. (2016). Stable and real-zero polynomials in two variables. Multidimensional Systems and Signal Processing, 27(1), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, M., Christensen, L. P. B., & Winther, O. (2010). Computing the minimum-phase filter using the QL-factorization. IEEE Transactions on Signal Processing, 58(6), 3195–3205.

    Article  MathSciNet  MATH  Google Scholar 

  • Hardin, D. P., Hogan, T. A., & Sun, Q. (2004). The matrix-valued Riesz lemma and local orthonormal bases in shift-invariant spaces. Advances in Computational Mathematics, 20(4), 367–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Hsung, T. C., Lun, D. P. K., Shum, Y. H., & Ho, K. C. (2007). Generalized discrete multiwavelet transform with embedded orthogonal symmetric prefilter bank. IEEE Transactions on Signal Processing, 55(12), 5619–5629.

    Article  MathSciNet  MATH  Google Scholar 

  • Hsung, T. C., Sun, M. C., Lun, D. K., & Siu, W. C. (2003). Symmetric prefilters for multiwavelets. IEE Proceedings-Vision, Image and Signal Processing, 150(1), 59–68.

    Article  Google Scholar 

  • Huo, G., & Miao, L. (2012). Cycle-slip detection of GPS carrier phase with methodology of SA4 multi-wavelet transform. Chinese Journal of Aeronautics, 25(2), 227–235.

    Article  Google Scholar 

  • Ježek, J., & Kučera, V. (1985). Efficient algorithm for matrix spectral factorization. Automatica, 21(6), 663–669.

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, Q. (1998). On the regularity of matrix refinable functions. The SIAM Journal on Mathematical Analysis, 29(5), 1157–1176.

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, Q. (1998). Orthogonal multiwavelets with optimum time–frequency resolution. IEEE Transactions on Signal Processing, 46(4), 830–844.

    Article  MathSciNet  Google Scholar 

  • Kalathil, S., & Elias, E. (2015). Prototype filter design approaches for near perfect reconstruction cosine modulated filter banks—A review. Journal of Signal Processing Systems, 81(2), 183–195.

    Article  Google Scholar 

  • Lawton, W. (1993). Applications of complex valued wavelet transforms to subband decomposition. IEEE Transactions on Signal Processing, 41(12), 3566–3568.

    Article  MATH  Google Scholar 

  • Lebrun, J., & Vetterli, M. (1998). Balanced multiwavelets theory and design. IEEE Transactions on Signal Processing, 46(4), 1119–1125.

    Article  MathSciNet  MATH  Google Scholar 

  • Lebrun, J., & Vetterli, M. (2001). High-order balanced multiwavelets: Theory, factorization, and design. IEEE Transactions on Signal Processing, 49(9), 1918–1930.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B., & Peng, L. (2011). Balanced multiwavelets with interpolatory property. IEEE Transactions on Signal Processing, 20(5), 1450–1457.

    MathSciNet  MATH  Google Scholar 

  • Li, Y. F., & Yang, S. Z. (2010). Construction of paraunitary symmetric matrices and parametrization of symmetric orthogonal multiwavelet filter banks. Acta Mathematica Sinica (China Series), 53(2), 279–290.

    MathSciNet  MATH  Google Scholar 

  • Massopust, P. R., Ruch, D. K., & Van Fleet, P. J. (1996). On the support properties of scaling vectors. Applied and Computational Harmonic Analysis, 3(3), 229–238.

    Article  MathSciNet  MATH  Google Scholar 

  • Micchelli, C. A., & Sauer, T. (1997). Regularity of multiwavelets. Advances in Computational Mathematics, 7(4), 455–545.

    Article  MathSciNet  MATH  Google Scholar 

  • Moir, T. J. (2011). A control theoretical approach to the polynomial spectral-factorization problem. Circuits, Systems, and Signal Processing, 30(5), 987–998.

    Article  MathSciNet  Google Scholar 

  • Oppenheim, A. V., & Schafer, R. W. (2009). Discrete-time signal processing (3rd ed.). Upper Saddle River: Prentice Hall Press.

    MATH  Google Scholar 

  • Plonka, G., & Strela, V. (1998). Construction of multiscaling functions with approximation and symmetry. The SIAM Journal on Mathematical Analysis, 29(2), 481–510.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosen, S., & Howell, P. (2011). Signals and systems for speech and hearing. Research in the sociology of organizations (2nd ed.). Bingley, UK: Emerald Group Publishing Ltd.

    Google Scholar 

  • Roux, J. L. (1986). 2D spectral factorization and stability test for 2D matrix polynomials based on the radon projection. In IEEE international conference on acoustics, speech, and signal processing, ICASSP ’86 (vol. 11, pp. 1041–1044).

  • Sayed, A. H., & Kailath, T. (2001). A survey of spectral factorization methods. Numerical linear algebra techniques for control and signal processing. Numerical Linear Algebra with Applications, 8(6–7), 467–496.

    Article  MathSciNet  MATH  Google Scholar 

  • Shen, L., Tan, H. H., & Tham, J. Y. (2000). Symmetric–antisymmetric orthonormal multiwavelets and related scalar wavelets. Applied and Computational Harmonic Analysis, 8(3), 258–279.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, M., & Barnwell, T. (1986). Exact reconstruction techniques for tree-structured subband coders. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(3), 434–441.

    Article  Google Scholar 

  • Strela, V. (1998). A note on construction of biorthogonal multi-scaling functions. In Wavelets, multiwavelets, and their applications (San Diego, CA, 1997), Contemp. Math. (vol. 216, pp. 149–157). Providence: American Mathematical Society.

  • Strela, V., Heller, P. N., Strang, G., Topiwala, P., & Heil, C. (1999). The application of multiwavelet filterbanks to image processing. IEEE Transactions on Image Processing, 8(4), 548–563.

    Article  Google Scholar 

  • Strela, V., Walden, A. (2000). Signal and image denoising via wavelet thresholding: orthogonal and biorthogonal, scalar and multiple wavelet transforms. In Nonlinear and nonstationary signal processing (Cambridge, 1998), pp. 395–441. Cambridge: Cambridge University Press.

  • Tan, H. H., Shen, L. X., & Tham, J. Y. (1999). New biorthogonal multiwavelets for image compression. Signal Processing, 79(1), 45–65.

    Article  Google Scholar 

  • Tham, J. Y., Shen, L., Lee, S. L., Tan, H. H. (1998). Good multifilter properties: A new tool for understanding multiwavelets. In Proceedings of international conference on imaging, science, systems and technology CISST-98, Las Vegas, USA (pp. 52–59).

  • Tham, J. Y., Shen, L., Lee, S. L., & Tan, H. H. (2000). A general approach for analysis and application of discrete multiwavelet transforms. IEEE Transactions on Signal Processing, 48(2), 457–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Turcajová, R. (1998). Hermite spline multiwavelets for image modeling. In Proceedings of SPIE 3391, wavelet applications V, Orlando (vol. 46, pp. 46–56).

  • Vandewalle, J., & Dewilde, P. (1975). On the minimal spectral factorization of nonsingular positive rational matrices. IEEE Transactions on Information Theory, 21(6), 612–618.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z., McWhirter, J. G., Weiss, S. (2015). Multichannel spectral factorization algorithm using polynomial matrix eigenvalue decomposition. In 2015 49th Asilomar conference on signals, systems and computers (pp. 1714–1718).

  • Wiener, N., & Masani, P. (1957). The prediction theory of multivariate stochastic processes. I. The regularity condition. Acta Mathematica, 98, 111–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Willems, J. (1971). Least squares stationary optimal control and the algebraic riccati equation. IEEE Transactions on Automatic Control, 16(6), 621–634.

    Article  MathSciNet  Google Scholar 

  • Wilson, G. T. (1972). The factorization of matricial spectral densities. SIAM Journal on Applied Mathematics, 23, 420–426.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, G., Li, D., Xiao, H., & Liu, Z. (2010). The \(M\)-band cardinal orthogonal scaling function. Applied Mathematics and Computation, 215(9), 3271–3279.

    MathSciNet  MATH  Google Scholar 

  • Yin, S. S., Zhou, Y., & Chan, S. C. (2015). An efficient method for designing of modulated filter banks with causal-stable IIR filters. Journal of Signal Processing Systems, 78(2), 187–197.

    Article  Google Scholar 

  • Youla, D. (1961). On the factorization of rational matrices. IRE Transactions on Information Theory, 7(3), 172–189.

    Article  MathSciNet  Google Scholar 

  • Youla, D. C., & Kazanjian, N. N. (1978). Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle. IEEE Transactions on Circuits and Systems, CAS–25(2), 57–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Zorzi, M. (2014). A new family of high-resolution multivariate spectral estimators. IEEE Transactions on Automatic Control, 59(4), 892–904.

    Article  MathSciNet  MATH  Google Scholar 

  • Zorzi, M. (2015). Multivariate spectral estimation based on the concept of optimal prediction. IEEE Transactions on Automatic Control, 60(6), 1647–1652.

    Article  MathSciNet  MATH  Google Scholar 

  • Zorzi, M., & Sepulchre, R. (2016). AR identification of latent-variable graphical models. IEEE Transactions on Automatic Control, 61(9), 2327–2340.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the three anonymous referees for their critical review and helpful suggestions that allowed improving the exposition of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasil Kolev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolev, V., Cooklev, T. & Keinert, F. Matrix spectral factorization for SA4 multiwavelet. Multidim Syst Sign Process 29, 1613–1641 (2018). https://doi.org/10.1007/s11045-017-0520-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0520-x

Keywords