Abstract
In this paper, we investigate Bauer’s method for the matrix spectral factorization of an r-channel matrix product filter which is a half-band autocorrelation matrix. We regularize the resulting matrix spectral factors by an averaging approach and by multiplication by a unitary matrix. This leads to the approximate and exact orthogonal SA4 multiscaling functions. We also find the corresponding orthogonal multiwavelet functions, based on the QR decomposition.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Change history
16 October 2018
After a careful review of the published version of our paper, we discovered that some references to the number of multiwavelet decomposition and reconstruction levels are incorrect.
16 October 2018
After a careful review of the published version of our paper, we discovered that some references to the number of multiwavelet decomposition and reconstruction levels are incorrect.
References
Abdou, A., Turcu, F., Grivel, E., Diversi, R., & Ferré, G. (2015). Identifying an autoregressive process disturbed by a moving-average noise using inner–outer factorization. Signal, Image and Video Processing, 9(1), 235–244.
Aliev, F., Bordyug, B. A., & Larin, V. (1992). Discrete generalized algebraic Riccati equations and polynomial matrix factorization. Systems & Control Letters, 18(1), 49–59.
Avelli, D. N., & Trentelman, H. (2008). Algorithms for multidimensional spectral factorization and sum of squares. In Special issue devoted to selected papers presented at the 13th conference of the international linear algebra society. Linear algebra and its applications, vol. 429, no. 5, pp. 1114–1134.
Averbuch, A. Z., Zheludev, V. A., & Cohen, T. (2007). Multiwavelet frames in signal space originated from Hermite splines. IEEE Transactions on Signal Processing, 55(3), 797–808.
Baggio, G. (2014). Spectral factorization of rational matrix valued functions. Master’s thesis, University of Padova.
Baggio, G., & Ferrante, A. (2016). On minimal spectral factors with zeroes and poles lying on prescribed regions. IEEE Transactions on Automatic Control, 61(8), 2251–2255.
Baggio, G., & Ferrante, A. (2016). On the factorization of rational discrete-time spectral densities. IEEE Transactions on Automatic Control, 61(4), 969–981.
Bart, H., Gohberg, I., & Kaashoek, M. (1979). Minimal factorization of matrix and operator functions. Operator theory: Advances and applications. Basel: Birkhäuser.
Bauer, F.L. (1956). Beiträge zur Entwicklung numerischer Verfahren für programmgesteuerte Rechenanlagen. II. Direkte Faktorisierung eines Polynoms. Bayer. Akad. Wiss. Math.-Nat. Kl. S.-B. 1956, 163–203 (1957)
Bose, N. K. (2017). Applied multidimensional systems theory (2nd ed.). Basel, Switzerland: Springer International Publishing.
Charoenlarpnopparut, C. (2007). One-dimensional and multidimensional spectral factorization using Gröbner basis approach. In 2007 Asia–Pacific conference on communications (pp. 201–204).
Cheung, K. W., & Po, L. M. (2001). Integer multiwavelet transform for lossless image coding. In Proceedings of 2001 international symposium on intelligent multimedia, video and speech processing, 2001 (pp. 117–120).
Chui, C. K., & Lian, J. A. (1996). A study of orthonormal multi-wavelets (Selected keynote papers presented at 14th IMACS World Congress, Atlanta, 1994). Applied Numerical Mathematics, 20(3), 273–298.
Cohen, A., Daubechies, I., & Plonka, G. (1997). Regularity of refinable function vectors. Journal of Fourier Analysis and Applications, 3(3), 295–324.
Cooklev, T., Nishihara, A., Kato, M., Sablatash, M. (1996). Two-channel multifilter banks and multiwavelets. In IEEE international conference on acoustics, speech, and signal processing conference proceedings ICASSP-96 (vol. 5, pp. 2769–2772).
Cotronei, M., Montefusco, L. B., & Puccio, L. (1998). Multiwavelet analysis and signal processing. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45(8), 970–987.
Davis, J. H. (2002). Foundations of deterministic and stochastic control. Basel: Birkhäuser.
Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3), 425–455.
Donovan, G. C., Geronimo, J. S., Hardin, D. P., & Massopust, P. R. (1996). Construction of orthogonal wavelets using fractal interpolation functions. The SIAM Journal on Mathematical Analysis, 27(4), 1158–1192.
Downie, T. R., & Silverman, B. W. (1998). The discrete multiple wavelet transform and thresholding methods. IEEE Transactions on Signal Processing, 46(9), 2558–2561.
Du, B., Xu, X., & Dai, X. (2013). Minimum-phase FIR precoder design for multicasting over MIMO frequency-selective channels. Journal of Electronics (China), 30(4), 319–327.
Ephremidze, L., Janashia, G., & Lagvilava, E. (2009). A simple proof of the matrix-valued Fejér-Riesz theorem. Journal of Fourier Analysis and Applications, 15(1), 124–127.
Ephremidze, L., Saied, F., & Spitkovsky, I. (2016). On algorithmization of Janashia–Lagvilava matrix spectral factorization method. IEEE Transactions on Information Theory. arXiv:1606.04909 (submitted).
Ferrante, A., & Picci, G. (2017). Representation and factorization of discrete-time rational all-pass functions. IEEE Transactions on Automatic Control, 62(7), 3262–3276.
Fischer, R. F. (2005). Sorted spectral factorization of matrix polynomials in MIMO communications. IEEE Transactions on Communications, 53(6), 945–951.
Gan, L., & Ma, K. K. (2005). On minimal lattice factorizations of symmetric–antisymmetric multifilterbanks. IEEE Transactions on Signal Processing, 53(2, part 1), 606–621.
Geronimo, J. S., Hardin, D. P., & Massopust, P. R. (1994). Fractal functions and wavelet expansions based on several scaling functions. The Journal of Approximation Theory, 78(3), 373–401.
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations. Johns Hopkins studies in the mathematical sciences (4th ed.). Baltimore: Johns Hopkins University Press.
Grinshpan, A., Kaliuzhnyi-Verbovetskyi, D. S., Vinnikov, V., & Woerdeman, H. J. (2016). Stable and real-zero polynomials in two variables. Multidimensional Systems and Signal Processing, 27(1), 1–26.
Hansen, M., Christensen, L. P. B., & Winther, O. (2010). Computing the minimum-phase filter using the QL-factorization. IEEE Transactions on Signal Processing, 58(6), 3195–3205.
Hardin, D. P., Hogan, T. A., & Sun, Q. (2004). The matrix-valued Riesz lemma and local orthonormal bases in shift-invariant spaces. Advances in Computational Mathematics, 20(4), 367–384.
Hsung, T. C., Lun, D. P. K., Shum, Y. H., & Ho, K. C. (2007). Generalized discrete multiwavelet transform with embedded orthogonal symmetric prefilter bank. IEEE Transactions on Signal Processing, 55(12), 5619–5629.
Hsung, T. C., Sun, M. C., Lun, D. K., & Siu, W. C. (2003). Symmetric prefilters for multiwavelets. IEE Proceedings-Vision, Image and Signal Processing, 150(1), 59–68.
Huo, G., & Miao, L. (2012). Cycle-slip detection of GPS carrier phase with methodology of SA4 multi-wavelet transform. Chinese Journal of Aeronautics, 25(2), 227–235.
Ježek, J., & Kučera, V. (1985). Efficient algorithm for matrix spectral factorization. Automatica, 21(6), 663–669.
Jiang, Q. (1998). On the regularity of matrix refinable functions. The SIAM Journal on Mathematical Analysis, 29(5), 1157–1176.
Jiang, Q. (1998). Orthogonal multiwavelets with optimum time–frequency resolution. IEEE Transactions on Signal Processing, 46(4), 830–844.
Kalathil, S., & Elias, E. (2015). Prototype filter design approaches for near perfect reconstruction cosine modulated filter banks—A review. Journal of Signal Processing Systems, 81(2), 183–195.
Lawton, W. (1993). Applications of complex valued wavelet transforms to subband decomposition. IEEE Transactions on Signal Processing, 41(12), 3566–3568.
Lebrun, J., & Vetterli, M. (1998). Balanced multiwavelets theory and design. IEEE Transactions on Signal Processing, 46(4), 1119–1125.
Lebrun, J., & Vetterli, M. (2001). High-order balanced multiwavelets: Theory, factorization, and design. IEEE Transactions on Signal Processing, 49(9), 1918–1930.
Li, B., & Peng, L. (2011). Balanced multiwavelets with interpolatory property. IEEE Transactions on Signal Processing, 20(5), 1450–1457.
Li, Y. F., & Yang, S. Z. (2010). Construction of paraunitary symmetric matrices and parametrization of symmetric orthogonal multiwavelet filter banks. Acta Mathematica Sinica (China Series), 53(2), 279–290.
Massopust, P. R., Ruch, D. K., & Van Fleet, P. J. (1996). On the support properties of scaling vectors. Applied and Computational Harmonic Analysis, 3(3), 229–238.
Micchelli, C. A., & Sauer, T. (1997). Regularity of multiwavelets. Advances in Computational Mathematics, 7(4), 455–545.
Moir, T. J. (2011). A control theoretical approach to the polynomial spectral-factorization problem. Circuits, Systems, and Signal Processing, 30(5), 987–998.
Oppenheim, A. V., & Schafer, R. W. (2009). Discrete-time signal processing (3rd ed.). Upper Saddle River: Prentice Hall Press.
Plonka, G., & Strela, V. (1998). Construction of multiscaling functions with approximation and symmetry. The SIAM Journal on Mathematical Analysis, 29(2), 481–510.
Rosen, S., & Howell, P. (2011). Signals and systems for speech and hearing. Research in the sociology of organizations (2nd ed.). Bingley, UK: Emerald Group Publishing Ltd.
Roux, J. L. (1986). 2D spectral factorization and stability test for 2D matrix polynomials based on the radon projection. In IEEE international conference on acoustics, speech, and signal processing, ICASSP ’86 (vol. 11, pp. 1041–1044).
Sayed, A. H., & Kailath, T. (2001). A survey of spectral factorization methods. Numerical linear algebra techniques for control and signal processing. Numerical Linear Algebra with Applications, 8(6–7), 467–496.
Shen, L., Tan, H. H., & Tham, J. Y. (2000). Symmetric–antisymmetric orthonormal multiwavelets and related scalar wavelets. Applied and Computational Harmonic Analysis, 8(3), 258–279.
Smith, M., & Barnwell, T. (1986). Exact reconstruction techniques for tree-structured subband coders. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(3), 434–441.
Strela, V. (1998). A note on construction of biorthogonal multi-scaling functions. In Wavelets, multiwavelets, and their applications (San Diego, CA, 1997), Contemp. Math. (vol. 216, pp. 149–157). Providence: American Mathematical Society.
Strela, V., Heller, P. N., Strang, G., Topiwala, P., & Heil, C. (1999). The application of multiwavelet filterbanks to image processing. IEEE Transactions on Image Processing, 8(4), 548–563.
Strela, V., Walden, A. (2000). Signal and image denoising via wavelet thresholding: orthogonal and biorthogonal, scalar and multiple wavelet transforms. In Nonlinear and nonstationary signal processing (Cambridge, 1998), pp. 395–441. Cambridge: Cambridge University Press.
Tan, H. H., Shen, L. X., & Tham, J. Y. (1999). New biorthogonal multiwavelets for image compression. Signal Processing, 79(1), 45–65.
Tham, J. Y., Shen, L., Lee, S. L., Tan, H. H. (1998). Good multifilter properties: A new tool for understanding multiwavelets. In Proceedings of international conference on imaging, science, systems and technology CISST-98, Las Vegas, USA (pp. 52–59).
Tham, J. Y., Shen, L., Lee, S. L., & Tan, H. H. (2000). A general approach for analysis and application of discrete multiwavelet transforms. IEEE Transactions on Signal Processing, 48(2), 457–464.
Turcajová, R. (1998). Hermite spline multiwavelets for image modeling. In Proceedings of SPIE 3391, wavelet applications V, Orlando (vol. 46, pp. 46–56).
Vandewalle, J., & Dewilde, P. (1975). On the minimal spectral factorization of nonsingular positive rational matrices. IEEE Transactions on Information Theory, 21(6), 612–618.
Wang, Z., McWhirter, J. G., Weiss, S. (2015). Multichannel spectral factorization algorithm using polynomial matrix eigenvalue decomposition. In 2015 49th Asilomar conference on signals, systems and computers (pp. 1714–1718).
Wiener, N., & Masani, P. (1957). The prediction theory of multivariate stochastic processes. I. The regularity condition. Acta Mathematica, 98, 111–150.
Willems, J. (1971). Least squares stationary optimal control and the algebraic riccati equation. IEEE Transactions on Automatic Control, 16(6), 621–634.
Wilson, G. T. (1972). The factorization of matricial spectral densities. SIAM Journal on Applied Mathematics, 23, 420–426.
Wu, G., Li, D., Xiao, H., & Liu, Z. (2010). The \(M\)-band cardinal orthogonal scaling function. Applied Mathematics and Computation, 215(9), 3271–3279.
Yin, S. S., Zhou, Y., & Chan, S. C. (2015). An efficient method for designing of modulated filter banks with causal-stable IIR filters. Journal of Signal Processing Systems, 78(2), 187–197.
Youla, D. (1961). On the factorization of rational matrices. IRE Transactions on Information Theory, 7(3), 172–189.
Youla, D. C., & Kazanjian, N. N. (1978). Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle. IEEE Transactions on Circuits and Systems, CAS–25(2), 57–69.
Zorzi, M. (2014). A new family of high-resolution multivariate spectral estimators. IEEE Transactions on Automatic Control, 59(4), 892–904.
Zorzi, M. (2015). Multivariate spectral estimation based on the concept of optimal prediction. IEEE Transactions on Automatic Control, 60(6), 1647–1652.
Zorzi, M., & Sepulchre, R. (2016). AR identification of latent-variable graphical models. IEEE Transactions on Automatic Control, 61(9), 2327–2340.
Acknowledgements
The authors would like to thank the three anonymous referees for their critical review and helpful suggestions that allowed improving the exposition of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kolev, V., Cooklev, T. & Keinert, F. Matrix spectral factorization for SA4 multiwavelet. Multidim Syst Sign Process 29, 1613–1641 (2018). https://doi.org/10.1007/s11045-017-0520-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-017-0520-x