Abstract
This paper focuses on the adaptive modified hybrid function projective synchronization with complex function transformation matrix (CMHFPS) for different dimensional chaotic (hyperchaotic) systems with complex variables and unknown complex parameters. The chaotic systems are considerably different from those in the existing closely related literature. Moreover, the transformation matrix in this type of chaos synchronization is not a square matrix, and its elements are complex functions. In particular, by constructing appropriate Lyapunov functions dependent on complex variables, the adaptive controllers are designed to synchronize different dimensional complex chaos (hyperchaos) with complex parameters in the sense of CMHFPS, and the complex update laws for estimating unknown complex parameters of complex chaotic systems are also given. Finally, two examples are presented to illustrate the effectiveness and feasibility of the theoretical results.
Similar content being viewed by others
References
Fowler, A.C., Gibbon, J.D.: The complex Lorenz equations. Phys. D 4, 139–163 (1982)
Gibbon, J.D., McGuinnes, M.J.: The real and complex Lorenz equations in rotating fluids and laser. Phys. D 5, 108–122 (1982)
Fowler, A.C., Gibbon, J.D., McGuinnes, M.J.: The real and complex Lorenz equations and their relevance to physical systems. Phys. D 7, 135–150 (1983)
Mahmoud, G.M., Bountis, T.: The dynamics of systems of complex nonlinear oscillators: a review. Int. J. bifurc. Chaos 14, 3821–3846 (2004)
Mahmoud, G.M., Alkashif, M.A.: Basic properties and chaotic synchronization of complex Lorenz system. Int. J. Mod. Phys. C 18, 253–265 (2007)
Mahmoud, G.M., Bountis, T., Mahmoud, E.E.: Active control and global synchronization of complex Chen and Lü systems. Int J. Bifurc. Chaos 17, 4295–4308 (2007)
Mahmoud, E.E.: Dynamics and synchronization of new hyperchaotic complex Lorenz system. Math. Comput. Model 55, 1951–1962 (2012)
Mahmoud, G.M., Mahmoud, E.E., Ahmed, M.E.: On the hyperchaotic complex Lü system. Nonlinear Dyn. 58, 725–738 (2009)
Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)
Newell, A.C., Moloney, J.V.: Nonlinear Optics. Addison Wesley, Reading (1992)
Rozhanskii, V.A., Tsendin, L.D.: Transport Phenomena in Partially Ionized Plasma. Taylor Francis, London (2001)
Cveticanin, L.: Resonant vibrations of nonlinear rotors. Mech. Mach. Theory 30, 581–588 (1995)
Dilao, R., Alves-Pires, R.: Nonlinear Dynamics in Particle Accelerators. World Scientific, Singapore (1996)
Wu, X.J., Zhu, C.J., Kan, H.B.: An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system. Appl. Math. Comput. 252, 201–214 (2015)
Mahmoud, G.M., Bountis, T., Al-Kashif, M.A., Aly, S.A.: Dynamical properties and synchronization of complex non-linear equations for detuned lasers. Dyn. Syst. 24, 63–79 (2009)
Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62, 875–882 (2010)
Liu, S., Chen, L.Q.: Second-order terminal sliding mode control for networks synchronization. Nonlinear Dyn. 79, 205–213 (2015)
Liu, S.T., Liu, P.: Adaptive anti-synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Anal. RWA 12, 3046–3055 (2011)
Mahmoud, G.M., Mahmoud, E.E.: Lag synchronization of hyperchaotic complex nonlinear systems. Nonlinear Dyn. 67, 1613–1622 (2012)
Chai, Y., Chen, L.Q.: Projective lag synchronization of spatiotemporal chaos via active sliding mode control, Commun. Nonlinear Sci. Numer. Simulat. 17, 3390–3398 (2012)
Mahmoud, G.M., Mahmoud, E.E.: Synchronization and control of hyperchaotic complex Lorenz system. Math. Comput. Simulat. 80, 2286–2296 (2010)
Liu, P., Liu, S.T., Li, X.: Adaptive modified function projective synchronization of general uncertain chaotic complex systems. Phys. Scr. 85, 035005 (2012)
Zhang, F.F., Liu, S.T., Yu, W.Y.: Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos. Chin. Phys. B 22, 120505 (2013)
Mahmoud, G.M., Mahmoud, E.E.: Complex modified projective synchronization of two chaotic complex nonlinear systems. Nonlinear Dyn. 73, 2231–2240 (2013)
Sun, J.W., Cui, G.Z., Wang, Y.F., Shen, Y.: Combination complex synchronization of three chaotic complex systems. Nonlinear Dyn. 79, 953–965 (2015)
Liu, S.T., Zhang, F.F.: Complex function projective synchronization of complex chaotic system and its applications in secure communication. Nonlinear Dyn. 12, 1–11 (2013)
Wu, Z.Y., Chen, G.R., Fu, X.C.: Synchronization of a network coupled with complex-variable chaotic systems. Chaos 22, 023127 (2012)
Zhang, Y., Jiang, J.J.: Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations. J. Sound Vib. 316, 248–262 (2008)
Luo, C., Wang, X.Y.: Hybrid modified function projective synchronization of two different dimensional complex nonlinear systems with parameters identification. J. Franklin I (350), 2646–2663 (2013)
Liu, J., Liu, S.T., Zhang, F.F.: A novel four-wing hyperchaotic complex system and its complex modified hybrid projective synchronization with different dimensions. Abstr. Appl. Anal. 2014, 257327 (2014)
Liu, J., Liu, S.T., Yuan, C.H.: Adaptive complex modified projective synchronization of complex chaotic (hyperchaotic) systems with uncertain complex parameters. Nonlinear Dyn. 79, 1035–1047 (2015)
Acknowledgments
The authors are very grateful to the editors and the reviewers for their constructive comments and suggestions. This research was supported in part by the National Nature Science Foundation of China (Grant Nos. 61273088, 61473133, 61533011), the Nature Science Foundation of Shandong Province, China (No. ZR2014FL015), Doctoral Research Foundation of University of Jinan (No. XBS1531) and the Foundation for University Young Key Teacher Program of Shandong Provincial Education Department, China.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, J., Liu, S. & Sprott, J.C. Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters. Nonlinear Dyn 83, 1109–1121 (2016). https://doi.org/10.1007/s11071-015-2391-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-015-2391-8