Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the adaptive modified hybrid function projective synchronization with complex function transformation matrix (CMHFPS) for different dimensional chaotic (hyperchaotic) systems with complex variables and unknown complex parameters. The chaotic systems are considerably different from those in the existing closely related literature. Moreover, the transformation matrix in this type of chaos synchronization is not a square matrix, and its elements are complex functions. In particular, by constructing appropriate Lyapunov functions dependent on complex variables, the adaptive controllers are designed to synchronize different dimensional complex chaos (hyperchaos) with complex parameters in the sense of CMHFPS, and the complex update laws for estimating unknown complex parameters of complex chaotic systems are also given. Finally, two examples are presented to illustrate the effectiveness and feasibility of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fowler, A.C., Gibbon, J.D.: The complex Lorenz equations. Phys. D 4, 139–163 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gibbon, J.D., McGuinnes, M.J.: The real and complex Lorenz equations in rotating fluids and laser. Phys. D 5, 108–122 (1982)

    Article  MathSciNet  Google Scholar 

  3. Fowler, A.C., Gibbon, J.D., McGuinnes, M.J.: The real and complex Lorenz equations and their relevance to physical systems. Phys. D 7, 135–150 (1983)

    Article  MathSciNet  Google Scholar 

  4. Mahmoud, G.M., Bountis, T.: The dynamics of systems of complex nonlinear oscillators: a review. Int. J. bifurc. Chaos 14, 3821–3846 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Mahmoud, G.M., Alkashif, M.A.: Basic properties and chaotic synchronization of complex Lorenz system. Int. J. Mod. Phys. C 18, 253–265 (2007)

    Article  MathSciNet  Google Scholar 

  6. Mahmoud, G.M., Bountis, T., Mahmoud, E.E.: Active control and global synchronization of complex Chen and Lü systems. Int J. Bifurc. Chaos 17, 4295–4308 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mahmoud, E.E.: Dynamics and synchronization of new hyperchaotic complex Lorenz system. Math. Comput. Model 55, 1951–1962 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mahmoud, G.M., Mahmoud, E.E., Ahmed, M.E.: On the hyperchaotic complex Lü system. Nonlinear Dyn. 58, 725–738 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  10. Newell, A.C., Moloney, J.V.: Nonlinear Optics. Addison Wesley, Reading (1992)

    MATH  Google Scholar 

  11. Rozhanskii, V.A., Tsendin, L.D.: Transport Phenomena in Partially Ionized Plasma. Taylor Francis, London (2001)

    Google Scholar 

  12. Cveticanin, L.: Resonant vibrations of nonlinear rotors. Mech. Mach. Theory 30, 581–588 (1995)

    Article  MathSciNet  Google Scholar 

  13. Dilao, R., Alves-Pires, R.: Nonlinear Dynamics in Particle Accelerators. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  14. Wu, X.J., Zhu, C.J., Kan, H.B.: An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system. Appl. Math. Comput. 252, 201–214 (2015)

    Article  MathSciNet  Google Scholar 

  15. Mahmoud, G.M., Bountis, T., Al-Kashif, M.A., Aly, S.A.: Dynamical properties and synchronization of complex non-linear equations for detuned lasers. Dyn. Syst. 24, 63–79 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62, 875–882 (2010)

    Article  MATH  Google Scholar 

  17. Liu, S., Chen, L.Q.: Second-order terminal sliding mode control for networks synchronization. Nonlinear Dyn. 79, 205–213 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu, S.T., Liu, P.: Adaptive anti-synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Anal. RWA 12, 3046–3055 (2011)

    Article  MATH  Google Scholar 

  19. Mahmoud, G.M., Mahmoud, E.E.: Lag synchronization of hyperchaotic complex nonlinear systems. Nonlinear Dyn. 67, 1613–1622 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chai, Y., Chen, L.Q.: Projective lag synchronization of spatiotemporal chaos via active sliding mode control, Commun. Nonlinear Sci. Numer. Simulat. 17, 3390–3398 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mahmoud, G.M., Mahmoud, E.E.: Synchronization and control of hyperchaotic complex Lorenz system. Math. Comput. Simulat. 80, 2286–2296 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, P., Liu, S.T., Li, X.: Adaptive modified function projective synchronization of general uncertain chaotic complex systems. Phys. Scr. 85, 035005 (2012)

    Article  MATH  Google Scholar 

  23. Zhang, F.F., Liu, S.T., Yu, W.Y.: Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos. Chin. Phys. B 22, 120505 (2013)

    Article  Google Scholar 

  24. Mahmoud, G.M., Mahmoud, E.E.: Complex modified projective synchronization of two chaotic complex nonlinear systems. Nonlinear Dyn. 73, 2231–2240 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sun, J.W., Cui, G.Z., Wang, Y.F., Shen, Y.: Combination complex synchronization of three chaotic complex systems. Nonlinear Dyn. 79, 953–965 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu, S.T., Zhang, F.F.: Complex function projective synchronization of complex chaotic system and its applications in secure communication. Nonlinear Dyn. 12, 1–11 (2013)

    Google Scholar 

  27. Wu, Z.Y., Chen, G.R., Fu, X.C.: Synchronization of a network coupled with complex-variable chaotic systems. Chaos 22, 023127 (2012)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Y., Jiang, J.J.: Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations. J. Sound Vib. 316, 248–262 (2008)

    Article  Google Scholar 

  29. Luo, C., Wang, X.Y.: Hybrid modified function projective synchronization of two different dimensional complex nonlinear systems with parameters identification. J. Franklin I (350), 2646–2663 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Liu, J., Liu, S.T., Zhang, F.F.: A novel four-wing hyperchaotic complex system and its complex modified hybrid projective synchronization with different dimensions. Abstr. Appl. Anal. 2014, 257327 (2014)

    MathSciNet  Google Scholar 

  31. Liu, J., Liu, S.T., Yuan, C.H.: Adaptive complex modified projective synchronization of complex chaotic (hyperchaotic) systems with uncertain complex parameters. Nonlinear Dyn. 79, 1035–1047 (2015)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the editors and the reviewers for their constructive comments and suggestions. This research was supported in part by the National Nature Science Foundation of China (Grant Nos. 61273088, 61473133, 61533011), the Nature Science Foundation of Shandong Province, China (No. ZR2014FL015), Doctoral Research Foundation of University of Jinan (No. XBS1531) and the Foundation for University Young Key Teacher Program of Shandong Provincial Education Department, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, S. & Sprott, J.C. Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters. Nonlinear Dyn 83, 1109–1121 (2016). https://doi.org/10.1007/s11071-015-2391-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2391-8

Keywords