Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

3D variable-structure chaotic system and its application in color image encryption with new Rubik’s Cube-like permutation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nowadays, images have an increasingly deep impact on human life, so it is essential to encrypt images. Among various image encryption methods, chaotic encryption is particularly prominent due to the unpredictability and initial state sensitivity of chaos. The security of chaos-based cryptosystems depends largely on the performance of the adopted chaotic systems. This paper proposes a three-dimensional variable-structure chaotic system (3DVSCS) whose structure is time-varying. The distinguished dynamical characteristics of 3DVSCS are verified by various metrics, such as lyapunov exponent, approximate entropy, etc. Taking full advantage of the chaotic sequences generated by the 3DVSCS, a novel cryptosystem (3DVSCS-IES) with the confusion–diffusion architecture is presented. To further enhance security, a novel Rubik’s Cube-like permutation method is designed to severely scramble adjacent pixels, and an iterative diffusion algorithm is employed to completely infect the entire cipher image with a slight change in the plaintext image. The security analyses show that the proposed image encryption algorithm owns better security performance than some typical state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Walker, S.J.: Big Data: A Revolution That Will Transform How We Live, Work, and Think, vol. 33, pp. 181–183. Taylor & Francis, London (2014)

    Google Scholar 

  2. Li, X.W., Lee, I.K.: Robust copyright protection using multiple ownership watermarks. Opt. Express 23(3), 3035–3046 (2015)

    Article  MathSciNet  Google Scholar 

  3. Zhang, L.Y., Liu, Y., Pareschi, F., Zhang, Y., Wong, K.W., Rovatti, R., Setti, G.: On the security of a class of diffusion mechanisms for image encryption. IEEE Trans. Cybern. 48(4), 1163–1175 (2017)

    Article  Google Scholar 

  4. Dragoi, I.C., Coltuc, D.: On local prediction based reversible watermarking. IEEE Trans. Image Process. 24(4), 1244–1246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nissenbaum, H.: The meaning of anonymity in an information age. Inf. Soc. 15(2), 141–144 (1999)

    Article  Google Scholar 

  6. Cheddad, A., Condell, J., Curran, K., et al.: Digital image steganography: survey and analysis of current methods. Signal Process. 90(3), 727–752 (2010)

    Article  MATH  Google Scholar 

  7. Li, X., Xiao, D., Wang, Q.H.: Error-free holographic frames encryption with CA pixel-permutation encoding algorithm. Opt. Lasers Eng. 100, 200–207 (2018)

    Article  Google Scholar 

  8. Yegireddi, R., Kumar, R. K.: A survey on conventional encryption algorithms of Cryptography. In: 2016 International Conference on ICT in Business Industry & Government (ICTBIG), pp. 1–4. IEEE (2016)

  9. Ahmad, I., Shin, S.: A novel hybrid image encryption-compression scheme by combining chaos theory and number theory. Signal Process. Image Commun. 98, 116418 (2021)

    Article  Google Scholar 

  10. Shand, M., Vuillemin, J.: Fast implementations of RSA cryptography. In: Proceedings of IEEE 11th Symposium on Computer Arithmetic, pp. 252–259. IEEE (1993)

  11. Pub F.: Data Encryption Standard (DES). FIPS PUB. 46-3 (1999)

  12. Heron, S.: Advanced encryption standard (AES). Netw. Secur. 12, 8–12 (2009)

    Article  Google Scholar 

  13. Basu, S.: International data encryption algorithm (IDEA)—a typical illustration. J. Glob. Res. Comput. Sci. 2(7), 116–118 (2011)

    Google Scholar 

  14. Zhang, Y., Xiao, D.: An image encryption scheme based on rotation matrix bit-level permutation and block diffusion. Commun. Nonlinear Sci. Numer. Simul. 19(1), 74–82 (2014)

    Article  MATH  Google Scholar 

  15. Hua, Z., Zhou, Y., Huang, H.: Cosine-transform-based chaotic system for image encryption. Inf. Sci. 480, 403–419 (2019)

    Article  Google Scholar 

  16. Jolfaei, A., Wu, X.W., Muthukkumarasamy, V.: On the security of permutation-only image encryption schemes. IEEE Trans. Inf. Forensics Secur. 11(2), 235–246 (2015)

    Article  Google Scholar 

  17. Faragallah, O.S., El-sayed, H.S., Afifi, A., El-Shafai, W.: Efficient and secure opto-cryptosystem for color images using 2D logistic-based fractional Fourier transform. Opt. Lasers Eng. 137, 106333 (2021)

    Article  Google Scholar 

  18. Chen, J., Zhu, Z.L., Zhang, L.B., Zhang, Y., Yang, B.Q.: Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image encryption. Signal Process. 142, 340–353 (2018)

    Article  Google Scholar 

  19. Kocarev, L.: Chaos-based cryptography: a brief overview. IEEE Circuits Syst. Mag. 1(3), 6–21 (2001)

    Article  Google Scholar 

  20. Hua, Z., Jin, F., Xu, B., Huang, H.: 2D Logistic-Sine-coupling map for image encryption. Signal Process. 149, 148–161 (2018)

    Article  Google Scholar 

  21. Zheng, J., Hu, H.: Bit cyclic shift method to reinforce digital chaotic maps and its application in pseudorandom number generator. Appl. Math. Comput. 420, 126788 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Zheng, J., Hu, H., Ming, H., Liu, X.: Theoretical design and circuit implementation of novel digital chaotic systems via hybrid control. Chaos Solitons Fractals 138, 109863 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, Y., Noonan, J.P., Yang, G., Jin, H.: Image encryption using the two-dimensional logistic chaotic map. J. Electron. Imaging 21(1), 013014 (2012)

    Article  Google Scholar 

  24. Liu, M., Zhang, S., Fan, Z., Qiu, M.: \({\rm H} _ {\infty } \) State estimation for discrete-time chaotic systems based on a unified model. IEEE Trans. Syst. Man Cybern. Part B (Cyber.) 42(4), 1053–1063 (2012)

    Article  Google Scholar 

  25. Lin, L., Shen, M., So, H.C., Chang, C.: Convergence analysis for initial condition estimation in coupled map lattice systems. IEEE Trans. Signal Process. 60(8), 4426–4432 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Srivastava, A.N., Das, S.: Detection and prognostics on low-dimensional systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 39(1), 44–54 (2008)

    Article  Google Scholar 

  27. Xia, X., Zheng, J.: A novel method to improve the dynamical degradation of digital chaotic systems. In: 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 379–384. IEEE (2018)

  28. Chen, Z., Yuan, X., Yuan, Y., Iu, H.H.C., Fernando, T.: Parameter identification of chaotic and hyper-chaotic systems using synchronization-based parameter observer. IEEE Trans. Circuits Syst. I Regul. Pap. 63(9), 1464–1475 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zeraoulia, E.: Robust Chaos and its Applications, vol. 79. World Scientific (2012)

  30. Merah, L., Ali-Pacha, A., Hadj-Said, N.: Real-time cryptosystem based on synchronized chaotic systems. Nonlinear Dyn. 82(1), 877–890 (2015)

    Article  MathSciNet  Google Scholar 

  31. Merah, L., Adnane, A., Ali-Pacha, A., Ramdani, S., Hadj-said, N.: Real-time implementation of a chaos based cryptosystem on low-cost hardware. Iran. J. Sci. Technol. Trans. Electr. Eng. 45(4), 1127–1150 (2021)

    Article  Google Scholar 

  32. Teng, L., Wang, X., Yang, F., Xian, Y.: Color image encryption based on cross 2D hyperchaotic map using combined cycle shift scrambling and selecting diffusion. Nonlinear Dyn. 105(2), 1859–1876 (2021)

    Article  Google Scholar 

  33. Qiu, H., Xu, X., Jiang, Z., Sun, K., Xiao, C.: A color image encryption algorithm based on hyperchaotic map and Rubik’s Cube scrambling. Nonlinear Dyn. 1–19 (2022)

  34. Chai, X., Fu, X., Gan, Z., Lu, Y., Chen, Y.: A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process. 155, 44–62 (2019)

    Article  Google Scholar 

  35. Seyedzadeh, S.M., Mirzakuchaki, S.: A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map. Signal Process. 92(5), 1202–1215 (2012)

    Article  Google Scholar 

  36. Liao, X., Lai, S., Zhou, Q.: A novel image encryption algorithm based on self-adaptive wave transmission. Signal Process. 90(9), 2714–2722 (2010)

    Article  MATH  Google Scholar 

  37. Wu, X., Kan, H., Kurths, J.: A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps. Appl. Soft Comput. 37, 24–39 (2015)

    Article  Google Scholar 

  38. Sun, J.: A chaotic image encryption algorithm combining 2D chaotic system and random XOR diffusion. Phys. Scr. 96(10), 105208 (2021)

    Article  Google Scholar 

  39. Jasra, B., Moon, A.H.: Color image encryption and authentication using dynamic DNA encoding and hyper chaotic system. Expert Syst. Appl. 206, 117861 (2022)

  40. Wu, X., Wang, K., Wang, X., Kan, H., Kurths, J.: Color image DNA encryption using NCA map-based CML and one-time keys. Signal Process. 148, 272–287 (2018)

    Article  Google Scholar 

  41. Wang, X., Gao, S.: Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by a Boolean network. Inf. Sci. 539, 195–214 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. ur Rehman, A., Liao, X., Ashraf, R., Ullah, S., Wang, H.: A color image encryption technique using exclusive-OR with DNA complementary rules based on chaos theory and SHA-2. Optik 159, 348–367 (2018)

  43. Hua, Z., Zhu, Z., Chen, Y., Li, Y.: Color image encryption using orthogonal Latin squares and a new 2D chaotic system. Nonlinear Dyn. 104(4), 4505–4522 (2021)

    Article  Google Scholar 

  44. Ahmad, I., Shin, S.: A novel hybrid image encryption-compression scheme by combining chaos theory and number theory. Signal Process. Image Commun. 98, 116418 (2021)

    Article  Google Scholar 

  45. Chai, X., Bi, J., Gan, Z., Liu, X., Zhang, Y., Chen, Y.: Color image compression and encryption scheme based on compressive sensing and double random encryption strategy. Signal Process. 176, 107684 (2020)

    Article  Google Scholar 

  46. Xuejing, K., Zihui, G.: A new color image encryption scheme based on DNA encoding and spatiotemporal chaotic system. Signal Process. Image Commun. 80, 115670 (2020)

    Article  Google Scholar 

Download references

Funding

This work is supported by Key R &D Program of Hubei Province (Grant No. 2020BAB104), the National Natural Science Foundation of China (Grant No. 62202183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, J., Hu, H. & Zheng, J. 3D variable-structure chaotic system and its application in color image encryption with new Rubik’s Cube-like permutation. Nonlinear Dyn 111, 7859–7882 (2023). https://doi.org/10.1007/s11071-023-08230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08230-2

Keywords