Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Low-thrust transfer trajectory planning and tracking in the Earth–Moon elliptic restricted three-body problem

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, the problem of low-thrust transfer between planar multi-revolution orbits at libration points near the secondary body in the Earth–Moon elliptic restricted three-body problem (ERTBP) is studied. Due to the presence of lunar orbital eccentricity, the ERTBP is closer to the real system than the circular restricted three-body problem (CRTBP). The stable and unstable invariant manifolds, associated with the libration point orbits in the CRTBP are used for the transfer trajectory planning. Different classes of heteroclinic connections are identified by the Poincaré section technique, which are used as initial trials for the calculation of energy-optimal low-thrust transfers. The trajectories are then switched to the ERTBP using continuous algorithms. We propose a computational strategy to match the non-autonomous dynamics of the ERTBP by coordinating the endpoints with the flight times of the transfer trajectories. Finally, a model predictive controller is designed for trajectory tracking in the real ephemeris that takes into account the actual lunar orbital eccentricity. The studies presented in this paper are more closely related to the requirements of practical lunar mission designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Crusan, J.C., Smith, R.M., Craig, D.A., Caram, J.M., Guidi, J., Gates, M., Krezel, J.M., Herrmann, N.B.: Deep space gateway concept: extending human presence into cislunar space. In: 2018 IEEE Aerospace Conference, pp. 1–10. IEEE (2018)

  2. Du, C., Starinova, O.: Generation of artificial halo orbits in near-moon space using low-thrust engines. Cosm. Res. 60(2), 124–138 (2022)

    Article  Google Scholar 

  3. Luo, T., Pucacco, G., Xu, M.: Lissajous and halo orbits in the restricted three-body problem by normalization method. Nonlinear Dyn. 101(4), 2629–2644 (2020)

    Article  Google Scholar 

  4. Misra, G., Peng, H., Bai, X.: Halo orbit station-keeping using nonlinear MPC and polynomial optimization. In: 2018 Space Flight Mechanics Meeting, p. 1454 (2018)

  5. Du, C., Starinova, O.: Optimal control of transfer to vertical orbits from lyapunov orbits using low-thrust engine. Mekhatronika, Avtomatizatsiya, Upravlenie 23(3), 158–167 (2022)

    Article  Google Scholar 

  6. Pontani, M., Pustorino, M.: Nonlinear earth orbit control using low-thrust propulsion. Acta Astronaut. 179, 296–310 (2021)

    Article  Google Scholar 

  7. Russell, R.P.: Primer vector theory applied to global low-thrust trade studies. J. Guid. Control. Dyn. 30(2), 460–472 (2007)

    Article  Google Scholar 

  8. Zhang, C., Topputo, F., Bernelli-Zazzera, F., Zhao, Y.S.: Low-thrust minimum-fuel optimization in the circular restricted three-body problem. J. Guid. Control. Dyn. 38(8), 1501–1510 (2015)

    Article  Google Scholar 

  9. Peng, H., Wang, W.: Adaptive surrogate model based multi-objective transfer trajectory optimization between different libration points. Adv. Space Res. 58(7), 1331–1347 (2016)

    Article  MathSciNet  Google Scholar 

  10. Canalias, E., Masdemont, J.J.: Homoclinic and heteroclinic transfer trajectories between planar lyapunov orbits in the sun-earth and earth-moon systems. Discrete Contin. Dyn. Syst. A 14(2), 261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chupin, M., Haberkorn, T., Trélat, E.: Transfer between invariant manifolds: from impulse transfer to low-thrust transfer. J. Guid. Control. Dyn. 41(3), 658–672 (2018)

    Article  Google Scholar 

  12. Du, C., Starinova, O.L., Liu, Y.: Transfer between the planar lyapunov orbits around the earth-moon l2 point using low-thrust engine. Acta Astronaut. 201, 513–525 (2022)

    Article  Google Scholar 

  13. Chai, R., Tsourdos, A., Savvaris, A., Chai, S., Xia, Y.: Solving constrained trajectory planning problems using biased particle swarm optimization. IEEE Trans. Aerosp. Electron. Syst. 57(3), 1685–1701 (2021)

    Article  Google Scholar 

  14. Huang, J., Biggs, J.D., Cui, N.: Families of halo orbits in the elliptic restricted three-body problem for a solar sail with reflectivity control devices. Adv. Space Res. 65(3), 1070–1082 (2020)

    Article  Google Scholar 

  15. Hou, X., Liu, L.: On motions around the collinear libration points in the elliptic restricted three-body problem. Mon. Not. R. Astron. Soc. 415(4), 3552–3560 (2011)

    Article  Google Scholar 

  16. Ferrari, F., Lavagna, M.: Periodic motion around libration points in the elliptic restricted three-body problem. Nonlinear Dyn. 93(2), 453–462 (2018)

    Article  Google Scholar 

  17. Neelakantan, R., Ramanan, R.: Design of multi-revolution orbits in the framework of elliptic restricted three-body problem using differential evolution. J. Astrophys. Astron. 42(1), 1–18 (2021)

    Article  Google Scholar 

  18. Peng, H., Xu, S.: Stability of two groups of multi-revolution elliptic halo orbits in the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 123(3), 279–303 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peng, H., Xu, S.: Transfer to a multi-revolution elliptic halo orbit in earth-moon elliptic restricted three-body problem using stable manifold. Adv. Space Res. 55(4), 1015–1027 (2015)

    Article  Google Scholar 

  20. Neelakantan, R., Ramanan, R.: Two-impulse transfer to multi-revolution halo orbits in the earth-moon elliptic restricted three body problem framework. J. Astrophys. Astron. 43(2), 1–16 (2022)

  21. Broucke, R.: Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7(6), 1003–1009 (1969)

    Article  MATH  Google Scholar 

  22. Chai, R., Tsourdos, A., Savvaris, A., Chai, S., Xia, Y., Chen, C.P.: Review of advanced guidance and control algorithms for space/aerospace vehicles. Prog. Aerosp. Sci. 122, 100696 (2021)

    Article  Google Scholar 

  23. Campagnola, S.: New Techniques in Astrodynamics for Moon Systems Exploration. University of Southern California, Los Angele (2010)

    Google Scholar 

  24. Parker, J.S., Anderson, R.L.: Low-Energy Lunar Trajectory Design, vol. 12. Wiley, New York (2014)

    Google Scholar 

  25. Guo, T., Jiang, F., Li, J.: Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization. Acta Astronaut. 71, 38–50 (2012)

    Article  Google Scholar 

  26. Pan, X., Pan, B., Li, Z.: Bounding homotopy method for minimum-time low-thrust transfer in the circular restricted three-body problem. J. Astronaut. Sci. 67(4), 1220–1248 (2020)

    Article  MathSciNet  Google Scholar 

  27. Jiang, F., Baoyin, H., Li, J.: Practical techniques for low-thrust trajectory optimization with homotopic approach. J. Guid. Control. Dyn. 35(1), 245–258 (2012)

    Article  Google Scholar 

  28. Shampine, L.F., Kierzenka, J., Reichelt, M.W., et al.: Solving boundary value problems for ordinary differential equations in matlab with bvp4c. Tutor. Notes 2000, 1–27 (2000)

    Google Scholar 

  29. Higham, D.J., Higham, N.J.: MATLAB Guide. SIAM (2016)

  30. Du, C., Starinova, O.L.: Orbital perturbation analysis and generation of nominal near rectilinear halo orbits using low-thrust propulsion. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 236(14), 2974–2990 (2022)

    Article  Google Scholar 

  31. Chai, R., Tsourdos, A., Gao, H., Xia, Y., Chai, S.: Dual-loop tube-based robust model predictive attitude tracking control for spacecraft with system constraints and additive disturbances. IEEE Trans. Industr. Electron. 69(4), 4022–4033 (2021)

  32. Kim, J., Jung, Y., Bang, H.: Linear time-varying model predictive control of magnetically actuated satellites in elliptic orbits. Acta Astronaut. 151, 791–804 (2018)

    Article  Google Scholar 

  33. Chai, R., Tsourdos, A., Gao, H., Chai, S., Xia, Y.: Attitude tracking control for reentry vehicles using centralised robust model predictive control. Automatica 145, 110561 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sanchez, J.C., Gavilan, F., Vazquez, R.: Chance-constrained model predictive control for near rectilinear halo orbit spacecraft rendezvous. Aerosp. Sci. Technol. 100, 105827 (2020)

    Article  Google Scholar 

  35. Chai, R., Tsourdos, A., Savvaris, A., Xia, Y., Chai, S.: Real-time reentry trajectory planning of hypersonic vehicles: a two-step strategy incorporating fuzzy multiobjective transcription and deep neural network. IEEE Trans. Ind. Electron. 67(8), 6904–6915 (2019)

    Article  Google Scholar 

  36. Chai, R., Tsourdos, A., Savvaris, A., Chai, S., Xia, Y., Chen, C.P.: Six-DOF spacecraft optimal trajectory planning and real-time attitude control: a deep neural network-based approach. IEEE Trans. Neural Netw. Learn. Syst. 31(11), 5005–5013 (2019)

    Article  Google Scholar 

  37. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

  38. Köhler, J., Müller, M.A., Allgöwer, F.: A novel constraint tightening approach for nonlinear robust model predictive control. In: 2018 Annual American Control Conference (ACC), pp. 728–734. IEEE (2018)

  39. Herceg, M., Kvasnica, M., Jones, C.N., Morari, M.: Multi-parametric toolbox 3.0. In: 2013 European control conference (ECC), pp. 502–510. IEEE (2013)

Download references

Funding

This work was supported by the grant of the Russian Science Foundation No. 22-29-01092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, C., Starinova, O. & Liu, Y. Low-thrust transfer trajectory planning and tracking in the Earth–Moon elliptic restricted three-body problem. Nonlinear Dyn 111, 10201–10216 (2023). https://doi.org/10.1007/s11071-023-08383-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08383-0

Keywords