Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Epidemic dynamics of complex networks based on information dependence

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Vaccination has played a significant role in suppressing the spread of epidemics. In this paper, A Susceptible-Vaccinated-Infected-Recovered (SVIR) epidemic model including degree-dependent transmission rates and imperfect vaccination is proposed. Based on game theory, individuals adopt vaccine and disease information for a period of time to decide whether or not to vaccinate, reflecting the information dependence of individual decisions by introducing a distributed delay. The vaccination rate is determined by the level of epidemic propagation, functioning as a time-varying variable rather than a fixed constant. Explicit expressions for the basic reproduction number and epidemic thresholds related to degree are derived through the next-generation matrix approach. Several sufficient conditions for the existence of five equilibria are presented. Additionally, the stability of the disease-free equilibrium and the persistence of the epidemic are demonstrated. Particularly, considering that individual decisions are influenced only by current information, the global attractivity of the unique endemic equilibrium is verified through the monotone iteration technique. Finally, based on a real contact network from a gallery exhibition in Dublin, we investigate the impact of information-dependent vaccination decisions on epidemic transmission and study the effect of various system parameters on the epidemic thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Morens, D.M., Folkers, G.K., Fauci, A.S.: The challenge of emerging and re-emerging infectious diseases: Infection and immunity. Nature 430(6996), 242–249 (2004)

    Article  ADS  Google Scholar 

  2. Morens, D.M., Folkers, G.K., Fauci, A.S.: Emerging infections: A perpetual challenge. Lancet Infectious Diseases 8(11), 710–719 (2008)

    Article  Google Scholar 

  3. Menachery, V.D., Yount, B.L., Debbink, K., Agnihothram, S., Gralinski, L.E.: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21(12), 1508–1513 (2015)

    Article  Google Scholar 

  4. Zheng, N., Du, S., Wang, J., Zhang, H., Cui, W., Kang, Z., Yang, T., Lou, B., Chi, Y., Long, H., Ma, M., Yuan, Q., Zhang, S., Zhang, D., Ye, F., Xin, J.: Predicting COVID-19 in China using hybrid AI model. IEEE Transactions on Cybernetics 50(7), 2891–2904 (2020)

    Article  Google Scholar 

  5. Luo, T., Cao, Z., Wang, Y., Zeng, D., Zhang, Q.: Role of asymptomatic COVID-19 cases in viral transmission: Findings from a herarchical community contact network model. IEEE Trans. Autom. Sci. Eng. 19(2), 576–585 (2022)

    Article  Google Scholar 

  6. Zhao, R., Liu, Q., Wang, Y., Jia, P., Li, C., Ma, Y., Zhu, W.: Dynamic crowd accident-risk assessment based on internal energy and information entropy for large-scale crowd flow considering COVID-19 epidemic. IEEE Trans. Intell. Transp. Syst. 23(10), 17466–17478 (2022)

    Article  Google Scholar 

  7. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K.: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5(3), 381–391 (2008)

    Article  Google Scholar 

  9. Watkins, N.J., Nowzari, C., Pappas, G.J.: Robust economic model predictive control of continuous-time epidemic processes. IEEE Trans. Autom. Control 65(3), 1116–1131 (2020)

    Article  MathSciNet  Google Scholar 

  10. Rashidi, L., Dalili-Yazdi, A., Entezari-Maleki, R., Sousa, L., Movaghar, A.: Modeling epidemic routing: Capturing frequently visited locations while preserving scalability. IEEE Trans. Veh. Technol. 70(3), 2713–2727 (2021)

    Article  Google Scholar 

  11. Li, M.Y., Smith, H.L., Wang, L.: Global dynamics of an SEIR epidemic model with vertical transmission. SIAM J. Appl. Math. 62(1), 58–69 (2001)

    Article  MathSciNet  Google Scholar 

  12. Zhou, Y., Liu, H.: Stability of periodic solutions for an SIS model with pulse vaccination. Math. Comput. Model. 38(3), 299–308 (2003)

    Article  MathSciNet  Google Scholar 

  13. Qu, B., Wang, H.: SIS epidemic spreading with heterogeneous infection rates. IEEE Transactions on Network Science and Engineering 4(3), 177–186 (2017)

    Article  Google Scholar 

  14. Liu, L., Wang, J., Liu, X.: Global stability of an SEIR epidemic model with age-dependent latency and relapse. Nonlinear Anal. Real World Appl. 24, 18–35 (2015)

    Article  MathSciNet  Google Scholar 

  15. Wang, J.B., Wang, L., Li, X.: Identifying spatial invasion of pandemics on metapopulation networks via anatomizing arrival history. IEEE Transactions on Cybernetics 46(12), 2782–2795 (2016)

    Article  Google Scholar 

  16. Shao, Q., Xia, C., Wang, L., Li, H.: A new propagation model coupling the offline and online social networks. Nonlinear Dyn. 98(3), 2171–2183 (2019)

    Article  Google Scholar 

  17. Yi, Y., Zhang, Z., Patterson, S.: Scale-free loopy structure is resistant to noise in consensus dynamics in complex networks. IEEE Transactions on Cybernetics 50(1), 190–200 (2020)

    Article  Google Scholar 

  18. Zhang, Q., Zhong, L., Gao, S., Li, X.: Optimizing HIV interventions for multiplex social networks via partition-based random search. IEEE Transactions on Cybernetics 48(12), 3411–3419 (2018)

    Article  Google Scholar 

  19. Liu, X., Stechlinski, P.: Transmission dynamics of a switched multi-city model with transport-related infections. Nonlinear Anal. Real World Appl. 14(1), 264–279 (2013)

    Article  MathSciNet  Google Scholar 

  20. Pagliara, R., Leonard, N.E.: Adaptive susceptibility and heterogeneity in contagion models on networks. IEEE Trans. Autom. Control 66(2), 581–594 (2021)

    Article  MathSciNet  Google Scholar 

  21. Kang, H., Fu, X.: Epidemic spreading and global stability of an SIS model with an infective vector on complex networks. Commun. Nonlinear Sci. Numer. Simul. 27, 30–39 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Wesley, C., Mata, A.S., Ferreira, S.C.: Robustness and fragility of the susceptible-infected-susceptible epidemic models on complex networks. Phys. Rev. E 98(1), 012310 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Xia, C., Wang, Z., Zheng, C., Guo, Q., Shi, Y., Dehmer, M., Chen, Z.: A new coupled disease-awareness spreading model with mass media on multiplex networks. Inf. Sci. 471, 185–200 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wang, Y., Wei, Z., Cao, J.: Epidemic dynamics of influenza-like diseases spreading in complex networks. Nonlinear Dyn. 101(3), 1801–1820 (2020)

    Article  Google Scholar 

  25. Luo, X., Jin, Z.: A new insight into isolating the high-degree nodes in network to control infectious diseases. Commun. Nonlinear Sci. Numer. Simul. 91, 105363 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wang, Z., Xia, C., Chen, Z., Chen, G.: Epidemic propagation with positive and negative preventive information in multiplex networks. IEEE Transactions on Cybernetics 51(3), 1454–1462 (2021)

    Article  Google Scholar 

  27. Li, K., Zhang, H., Zhu, G., Small, M., Fu, X.: Suboptimal control and targeted constant control for semi-random epidemic networks. IEEE Transactions on Systems Man Cybernetics: Systems 51(4), 2602–2610 (2021)

    Article  Google Scholar 

  28. Li, D., Xie, W., Han, D., Sun, M.: A multi-information epidemic spreading model on a two-layer network. Inf. Sci. 651, 119723 (2023)

    Article  Google Scholar 

  29. Morita, S.: Type reproduction number for epidemic models on heterogeneous networks. Phys. A 587, 126514 (2022)

    Article  Google Scholar 

  30. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)

    Article  ADS  Google Scholar 

  31. Peng, X.L., Xu, X.J., Fu, X., Zhou, T.: Vaccination intervention on epidemic dynamics in networks. Phys. Rev. E 87(2), 022813 (2013)

    Article  ADS  Google Scholar 

  32. Butler, D.: Epic project to stockpile vaccines. Nature 541(7638), 444–445 (2017)

    Article  ADS  Google Scholar 

  33. Lv, W., Ke, Q., Li, K.: Dynamical analysis and control strategies of an SIVS epidemic model with imperfect vaccination on scale-free networks. Nonlinear Dyn. 99(2), 1507–1523 (2020)

    Article  Google Scholar 

  34. Li, C.L., Li, C.H.: Dynamics of an epidemic model with imperfect vaccinations on complex networks. J. Phys. A: Math. Theor. 53(46), 464001 (2020)

    Article  MathSciNet  Google Scholar 

  35. Bauch, C.T., Galvani, A.P., Earn, D.J.D.: Group interest versus self-interest in smallpox vaccination policy. Proc. Natl. Acad. Sci. 100(18), 10564–10567 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  36. Cardillo, A., Reyes-Suarez, C., Naranjo, F., Gomez-Gardenes, J.: Evolutionary vaccination dilemma in complex networks. Phys. Rev. E 88(3), 032803 (2013)

    Article  ADS  Google Scholar 

  37. Wei, Y., Lin, Y., Wu, B.: Vaccination dilemma on an evolving social network. J. Theor. Biol. 483, 109978 (2019)

    Article  MathSciNet  Google Scholar 

  38. Hota, A.R., Sundaram, S.: Game-theoretic vaccination against networked SIS epidemics and impacts of human decision-making. IEEE Transactions on Control of Network Systems 6(4), 1461–1472 (2019)

    Article  MathSciNet  Google Scholar 

  39. Huang, K., Wang, Z., Jusup, M.: Incorporating latent constraints to enhance inference of network structure. IEEE Transactions on Network Science and Engineering 7(1), 466–475 (2020)

    Article  MathSciNet  Google Scholar 

  40. Bauch, C.T., Earn, D.: Vaccination and the theory of games. Proc. Natl. Acad. Sci. 101(36), 13391–13394 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  41. Bauch, C.T.: Imitation dynamics predict vaccinating behaviour. Proceedings of the Royal Society B: Biological Sciences 272(1573), 1669–1675 (2005)

    Article  Google Scholar 

  42. Molina, C., Earn, D.J.D.: Game theory of pre-emptive vaccination before bioterrorism or accidental release of smallpox. J. R. Soc. Interface 12(107), 20141387 (2015)

    Article  Google Scholar 

  43. Zhu, L., Zhao, H., Wang, H.: Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms. Inf. Sci. 349, 119–136 (2016)

    Article  Google Scholar 

  44. Como, G., Fagnani, F., Zino, L.: Imitation dynamics in population games on community networks. IEEE Transactions on Control of Network Systems 8(1), 65–76 (2021)

    Article  MathSciNet  Google Scholar 

  45. Bhattacharyya, S., Bauch, C.T.: A game dynamic model for delayer strategies in vaccinating behaviour for pediatric infectious diseases. J. Theor. Biol. 267(3), 276–282 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  46. Bauch, C.T., Bhattacharyya, S.: Evolutionary game theory and social learning can determine how vaccine scares unfold. PLoS Comput. Biol. 8(4), e1002452 (2012)

  47. Ge, J., Wang, W.: Vaccination games in prevention of infectious diseases with application to COVID-19. Chaos, Solitons Fractals 161, 112294 (2022)

    Article  MathSciNet  Google Scholar 

  48. Isella, L., Stehle, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  49. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63(6), 066117 (2001)

  50. Wan, C., Li, T., Zhang, W., Dong, J.: Dynamics of epidemic spreading model with drug-resistant variation on scale-free networks. Phys. A 493, 17–28 (2018)

    Article  MathSciNet  Google Scholar 

  51. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  52. Keener, J.P.: The Perron-Frobenius theorem and the ranking of football teams. SIAM Rev. 35(1), 80–93 (1993)

    Article  MathSciNet  Google Scholar 

  53. Lajmanovich, A., Yorke, J.A.: A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28(3–4), 221–236 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant No. 62373309; the Natural Science Foundation of Chongqing under grant No. CSTB2023NSCQB-MSX0688 and the Postgraduate Research and Innovation Project of Chongqing under grant No. CYB23108.

Author information

Authors and Affiliations

Authors

Contributions

HB and XW designed and performed the research and wrote the article.

Corresponding author

Correspondence to Haibo Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Proof of Theorem 2

According to system (4), its Jacobian matrix can be obtained as follows:

$$\begin{aligned} {{\textbf {J}}}=\begin{pmatrix} J_{11}& J_{12}& J_{13}& {{\textbf {0}}}& J_{15}\\ J_{21}& J_{22}& J_{23}& {{\textbf {0}}}& J_{25}\\ J_{31}& J_{32}& J_{33}& {{\textbf {0}}}& {{\textbf {0}}}\\ {{\textbf {0}}}& {{\textbf {0}}}& J_{43}& J_{44}& {{\textbf {0}}}\\ {{\textbf {0}}}& {{\textbf {0}}}& J_{53}& {{\textbf {0}}}& J_{55} \end{pmatrix}, \end{aligned}$$
(15)

where

$$\begin{aligned} & J_{13}=\begin{pmatrix} -\frac{nP(n)\beta ^S(n) S_n}{\left\langle k\right\rangle }& \cdots & -\frac{mP(m)\beta ^S(n) S_n}{\left\langle k\right\rangle }\\ \vdots & \vdots & \vdots \\ -\frac{nP(n)\beta ^S(m) S_m}{\left\langle k\right\rangle }& \cdots & -\frac{mP(m)\beta ^S(m) S_m}{\left\langle k\right\rangle } \end{pmatrix}, \\ & J_{12}=\begin{pmatrix} \delta & \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & \delta \end{pmatrix}, J_{15}=\begin{pmatrix} -S_n& \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & -S_m \end{pmatrix}, \\ & J_{21}=\begin{pmatrix} x_n& \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & x_m \end{pmatrix}, J_{25}=\begin{pmatrix} S_n& \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & S_m \end{pmatrix}, \end{aligned}$$
$$\begin{aligned} & J_{22}=\begin{pmatrix} -\Big (\beta ^V(n)\varTheta +\delta +\omega \Big )& \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & -\Big (\beta ^V(m)\varTheta +\delta +\omega \Big ) \end{pmatrix}, \\ & J_{23}=\begin{pmatrix} -\frac{nP(n)\beta ^V(n)V_n}{\left\langle k\right\rangle }& \cdots & -\frac{mP(m)\beta ^V(n)V_n}{\left\langle k\right\rangle }\\ \vdots & \vdots & \vdots \\ -\frac{nP(n)\beta ^V(m)V_m}{\left\langle k\right\rangle }& \cdots & -\frac{mP(m)\beta ^V(m)V_m}{\left\langle k\right\rangle } \end{pmatrix},\\ & J_{11}=\begin{pmatrix} -\Big (\beta ^S(n) \varTheta +x_n+\omega \Big )& \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & -\Big (\beta ^S(m) \varTheta +x_m+\omega \Big ) \end{pmatrix}, \\ & J_{33}=\begin{pmatrix} \frac{nP(n)\Big (\beta ^S(n) S_n+\beta ^V(n)V_n\Big )}{\left\langle k\right\rangle }-(\gamma +\omega )& \cdots & \frac{mP(m)\Big (\beta ^S(n) S_n+\beta ^V(n)V_n\Big )}{\left\langle k\right\rangle }\\ \vdots & \ddots & \vdots \\ \frac{nP(n)\Big (\beta ^S(m) S_m+\beta ^V(m)V_m\Big )}{\left\langle k\right\rangle }& \cdots & \frac{mP(m)\Big (\beta ^S(m) S_m+\beta ^V(m)V_m\Big )}{\left\langle k\right\rangle }-(\gamma +\omega ) \end{pmatrix}, \end{aligned}$$
$$\begin{aligned} & J_{31}=\begin{pmatrix} \beta ^S(n) \varTheta & \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & \beta ^S(m) \varTheta \end{pmatrix}, \\ & J_{32}=\begin{pmatrix} \beta ^V(n)\varTheta & \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & \beta ^V(m)\varTheta \end{pmatrix}, & J_{43}=\begin{pmatrix} \gamma & \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & \gamma \end{pmatrix}, J_{44}=\begin{pmatrix} -\omega & \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & -\omega \end{pmatrix}, \\ & J_{53}=\begin{pmatrix} f_n& \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & f_m \end{pmatrix}, J_{55}=\begin{pmatrix} g_n& \cdots & 0\\ \vdots & \ddots & \vdots \\ 0& \cdots & g_m \end{pmatrix}, \\ g_n= & \xi (1-2x_n)W_n, \\ f_n= & \xi x_n(1-x_n)\Big ((1-\sigma )\beta ^V(n)\\ & +(\sigma \delta -1)\beta ^S(n)\Big )C_I(1-e^{-\alpha \tau }). \end{aligned}$$

Then the characteristic equation of \(E_0\) for J can be inferred

$$\begin{aligned} \left| \begin{array}{ccccc} J_{11}-\lambda {{\textbf {I}}}& J_{12}& J_{13}& {{\textbf {0}}}& J_{15}\\ {{\textbf {0}}}& J_{22}-\lambda {{\textbf {I}}}& {{\textbf {0}}}& {{\textbf {0}}}& J_{25}\\ {{\textbf {0}}}& {{\textbf {0}}}& J_{33}-\lambda {{\textbf {I}}}& {{\textbf {0}}}& {{\textbf {0}}}\\ {{\textbf {0}}}& {{\textbf {0}}}& J_{43}& J_{44}-\lambda {{\textbf {I}}}& {{\textbf {0}}}\\ {{\textbf {0}}}& {{\textbf {0}}}& {{\textbf {0}}}& {{\textbf {0}}}& J_{55}-\lambda {{\textbf {I}}} \end{array}\right| _{E_0}= & 0, \end{aligned}$$
(16)

where \({{\textbf {I}}}\) is an identity matrix with appropriate dimension. The characteristic equation (16) can be further transformed into

$$\begin{aligned} & (\lambda +\gamma +\omega )^{\mathbb {n}-1}\Big (\lambda -\frac{\sum _{k=n}^{m}kP(k)\beta ^S(k) }{\left\langle k\right\rangle }+\gamma +\omega \Big )\nonumber \\ & \times \Big ((\lambda +\omega )^2(\lambda +\omega +\delta )(\lambda +\xi C_V(1-e^{-\alpha \tau }))\Big )^\mathbb {n}=0.\nonumber \\ \end{aligned}$$
(17)

Clearly, when \({\mathscr {R}}_0<1\), \(E_0\) is locally asymptotically stable.

Similarly, the characteristic equation of \(E_1\) is

$$\begin{aligned} \left| \begin{array}{ccccc} J_{11}-\lambda {{\textbf {I}}}& J_{12}& J_{13}& {{\textbf {0}}}& J_{15}\\ J_{21}& J_{22}-\lambda {{\textbf {I}}}& J_{23}& {{\textbf {0}}}& J_{25}\\ {{\textbf {0}}}& {{\textbf {0}}}& J_{33}-\lambda {{\textbf {I}}}& {{\textbf {0}}}& {{\textbf {0}}}\\ {{\textbf {0}}}& {{\textbf {0}}}& J_{43}& J_{44}-\lambda {{\textbf {I}}}& {{\textbf {0}}}\\ {{\textbf {0}}}& {{\textbf {0}}}& {{\textbf {0}}}& {{\textbf {0}}}& J_{55}-\lambda {{\textbf {I}}} \end{array}\right| _{E_1}= & 0.\nonumber \\ \end{aligned}$$
(18)

By calculation, the characteristic equation (18) must have a characteristic root \(\lambda =\xi C_V(1-e^{-\alpha \tau })>0\). Therefore, \(E_1\) is always unstable.

When \({\mathscr {R}}_0>1\), there must be a positive eigenvalue \(\lambda \) of \({{\textbf {J}}}\). Based on the Perron-Frobenius theorem [52], the largest real part of all eigenvalues of \({{\textbf {J}}}\) is positive only when \({\mathscr {R}}_0>1\). Therefore, it is \(\lim _{t\rightarrow \infty }\inf I(t)\ge \varepsilon \) based on the theorem in [53]. This completes the proof.

B Proof of Theorem 3

In the light of Theorem 2, there is a constant \(0<\zeta <\frac{1}{3}\) and a large enough constant \(T>0\) such that \(I_k(t)\ge \zeta \) holds for all \(t>T\). Based on the first equation of system (9), it yields

$$\begin{aligned} {\dot{S}}_k\le & \omega -\beta ^S(k) \zeta S_k-x_kS_k+\delta \Big (1-S_k-I_k-R_k\Big )-\omega S_k \\\le & \omega +\delta -\Big (\beta ^S(k) \zeta +x_k+\omega +\delta \Big )S_k, t>T. \end{aligned}$$

In accordance with the standard comparison theorem of differential equation theory, for any given normal number \(0<\zeta _1<\frac{\beta ^S(k) \zeta +x_k}{2(\beta ^S(k) \zeta +x_k+\omega +\delta )}\), \(\exists t_1>T\), for \(t>t_1\), \(S_k(t)\le {\mathbb {X}}_k^{(1)}-\zeta _1\), where

$$\begin{aligned} {\mathbb {X}}_k^{(1)}=\frac{\omega +\delta }{\beta ^S(k) \zeta +x_k+\omega +\delta }+2\zeta _1<1. \end{aligned}$$

Similarly,

$$\begin{aligned} {\dot{V}}_k\le & x_kS_k-\beta ^V(k)\zeta V_k-(\omega +\delta ) V_k\\\le & x_k-\Big (\beta ^V(k)\zeta +x_k+\omega +\delta \Big )V_k, t>t_1. \end{aligned}$$

Therefore, for any given constant \(0<\zeta _2<\min \Big \{\frac{1}{2}, \zeta _1,\) \( \frac{\beta ^V(k)\zeta +\omega +\delta }{2(\beta ^V(k)\zeta +x_k+\omega +\delta )}\Big \}\), \(\exists t_2>t_1\), when \(t>t_2\), \(V_k(t)\le {\mathbb {Y}}_k^{(1)}-\zeta _2\), where

$$\begin{aligned} {\mathbb {Y}}_k^{(1)}=\frac{x_k}{\beta ^V(k)\zeta +x_k+\omega +\delta }+2\zeta _2<1. \end{aligned}$$

Utilizing the third equation of system (9) yields

$$\begin{aligned} {\dot{I}}_k\le & \beta ^S(k) (1-I_k)+\Big (\beta ^V(k)-\beta ^S(k) \Big )V_k-(\gamma +\omega )I_k \\\le & \beta ^S(k) -\Big (\beta ^S(k) +\gamma +\omega \Big )I_k, t>t_2. \end{aligned}$$

Thus, for an arbitrary given constant \(0<\zeta _3<\min \Big \{\frac{1}{3}, \zeta _2,\) \(\frac{\gamma +\omega }{2(\beta ^S(k) +\gamma +\omega )}\Big \}\), \(\exists t_3>t_2\), when \(t>t_3\), \(I_k(t)\le {\mathbb {Z}}_k^{(1)}-\zeta _3\), where

$$\begin{aligned} {\mathbb {Z}}_k^{(1)}=\frac{\beta ^S(k) }{\beta ^S(k) +\gamma +\omega }+2\zeta _3<1. \end{aligned}$$

With the help of the fourth equation of system (9), it is straightforward to obtain

$$\begin{aligned} {\dot{R}}_k\le \gamma -(\gamma +\omega ) R_k, t>t_3. \end{aligned}$$

As a consequence, for a given positive constant \(0<\zeta _4<\min \Big \{\frac{1}{4}, \zeta _3, \frac{\omega }{2(\gamma +\omega )}\Big \}\), \(\exists t_4>t_3\), and for \(t>t_4\), \(R_k(t)\le {\mathbb {M}}_k^{(1)}-\zeta _4\), where

$$\begin{aligned} {\mathbb {M}}_k^{(1)}=\frac{\gamma }{\gamma +\omega }+2\zeta _4<1. \end{aligned}$$

Next, the first equation of substituting \(V_k(t)\le {\mathbb {Y}}_k^{(1)}-\zeta _2, I_k(t)\le {\mathbb {Z}}_k^{(1)}-\zeta _3, R_k(t)\le {\mathbb {M}}_k^{(1)}-\zeta _4\) into system (9) is

$$\begin{aligned} {\dot{S}}_k\ge & \omega -\beta ^S(k) S_k-x_kS_k+\delta \Big (1-S_k-I_k-R_k\Big )-\omega S_k \\\ge & \omega +\delta \Big (1-{\mathbb {Z}}_k^{(1)}-{\mathbb {M}}_k^{(1)}\Big )-\Big (\beta ^S(k) +x_k\\ & +\omega +\delta \Big )S_k, t>t_4. \end{aligned}$$

Consequently, for

$$0<\zeta _5<\min \Big \{\frac{1}{5}, \zeta _4, \frac{\omega +\delta (1-{\mathbb {Z}}_k^{(1)}-{\mathbb {M}}_k^{(1)})}{2(\beta ^S(k) +x_k+\omega +\delta )}\Big \},$$

\(\exists t_5>t_4\), when \(t>t_5\), \(S_k(t)\ge \mathbb {x}_k^{(1)}+\zeta _5\), where

$$\begin{aligned} \mathbb {x}_k^{(1)}=\frac{\omega +\delta \Big (1-{\mathbb {Z}}_k^{(1)}-{\mathbb {M}}_k^{(1)}\Big )}{\beta ^S(k) +x_k+\omega +\delta }-2\zeta _5>0. \end{aligned}$$

Similarly,

$$\begin{aligned} {\dot{V}}_k\ge & x_k\Big (1-V_k-I_k-R_k\Big )-\beta ^V(k) V_k-(\omega +\delta ) V_k\\\ge & x_k\Big (1-{\mathbb {Z}}_k^{(1)}-{\mathbb {M}}_k^{(1)}\Big )-\Big (\beta ^V(k)+x_k\\ & +\omega +\delta \Big )V_k, t>t_5. \end{aligned}$$

Thereby, for \(0<\zeta _6<\min \Big \{\frac{1}{6}, \zeta _5, \frac{x_k(1-{\mathbb {Z}}_k^{(1)}-{\mathbb {M}}_k^{(1)})}{2(\beta ^V(k)+x_k+\omega +\delta )}\Big \}\), \(\exists t_6>t_5\), for \(t>t_6\), \(V_k(t)\ge \mathbb {y}_k^{(1)}+\zeta _6\), where

$$\begin{aligned} \mathbb {y}_k^{(1)}=\frac{x_k\Big (1-{\mathbb {Z}}_k^{(1)}-{\mathbb {M}}_k^{(1)}\Big )}{\beta ^V(k)+x_k+\omega +\delta }-2\zeta _6>0. \end{aligned}$$

Furthermore,

$$\begin{aligned} {\dot{I}}_k\ge & \beta ^S(k) \zeta \Big (1-I_k-R_k\Big )-\Big (\beta ^S(k) -\beta ^V(k)\Big )\zeta V_k\\ & -(\gamma +\omega )I_k \\\ge & \beta ^S(k) \zeta \Big (1-{\mathbb {M}}_k^{(1)}\Big )-\Big (\beta ^S(k) -\beta ^V(k)\Big )\zeta {\mathbb {Y}}_k^{(1)}\\ & -\Big (\beta ^S(k) \zeta +\gamma +\omega \Big )I_k, t>t_6. \end{aligned}$$

As a consequence, for

$$0<\zeta _7<\min \Big \{\frac{1}{7}, \zeta _6,$$

\( \frac{\beta ^S(k) \zeta (1-{\mathbb {M}}_k^{(1)})-(\beta ^S(k) -\beta ^V(k))\zeta {\mathbb {Y}}_k^{(1)}}{2(\beta ^S(k) \zeta +\gamma +\omega )}\Big \}\), \(\exists t_7>t_6\), when \(t>t_7\), \(I_k(t)\ge \mathbb {z}_k^{(1)}+\zeta _7\), where

$$\begin{aligned} \mathbb {z}_k^{(1)}= & \frac{\beta ^S(k) \zeta \Big (1-{\mathbb {M}}_k^{(1)}\Big )-\Big (\beta ^S(k) -\beta ^V(k)\Big )\zeta {\mathbb {Y}}_k^{(1)}}{\beta ^S(k) \zeta +\gamma +\omega }\\ & -2\zeta _7>0. \end{aligned}$$

In addition,

$$\begin{aligned} {\dot{R}}_k\ge \gamma \Big (1-{\mathbb {X}}_k^{(1)}-{\mathbb {Y}}_k^{(1)}\Big )-(\gamma +\omega ) R_k, t>t_7. \end{aligned}$$

Hence, for \(0<\zeta _8<\min \Big \{\frac{1}{8}, \zeta _7, \frac{\gamma (1-{\mathbb {X}}_k^{(1)}-{\mathbb {Y}}_k^{(1)})}{2(\gamma +\omega )}\Big \}\), \(\exists t_8>t_7\), for \(t>t_8\), \(R_k(t)\ge \mathbb {m}_k^{(1)}+\zeta _8\), where

$$\begin{aligned} \mathbb {m}_k^{(1)}=\frac{\gamma \Big (1-{\mathbb {X}}_k^{(1)}-{\mathbb {Y}}_k^{(1)}\Big )}{\gamma +\omega }-2\zeta _8>0. \end{aligned}$$

Due to the fact that \(\zeta \) is a small positive constant, then \(0<\mathbb {x}_k^{(1)}<S_k<{\mathbb {X}}_k^{(1)}<1, 0<\mathbb {y}_k^{(1)}<V_k<{\mathbb {Y}}_k^{(1)}<1, 0<\mathbb {z}_k^{(1)}<I_k<{\mathbb {Z}}_k^{(1)}<1\) and \(0<\mathbb {m}_k^{(1)}<R_k<{\mathbb {M}}_k^{(1)}<1\). Let

$$\begin{aligned} \varPhi ^{(i)}= & \frac{1}{\left\langle k\right\rangle }\sum _{k=n}^{m}kP(k){\mathbb {Z}}_k^{(i)},\nonumber \\ \phi ^{(i)}= & \frac{1}{\left\langle k\right\rangle }\sum _{k=n}^{m}kP(k)\mathbb {z}_k^{(i)}, i=1,2,\dots . \end{aligned}$$
(19)

Hence, \(0<\phi ^{(1)}\le \varTheta (t)\le \varPhi ^{(1)}<1, t>t_8\).

Substituting \(V_k(t)\ge \mathbb {y}_k^{(1)}+\zeta _6, I_k(t)\ge \mathbb {z}_k^{(1)}+\zeta _7, R_k(t)\le \mathbb {m}_k^{(1)} +\zeta _8\) into the first equation of system (9), it has

$$\begin{aligned} {\dot{S}}_k\le & \omega -\beta ^S(k) \phi ^{(1)} S_k-x_kS_k+\delta \Big (1-S_k-I_k-R_k\Big )\\ & -\omega S_k \\\le & \omega +\delta \Big (1-\mathbb {z}_k^{(1)}-\mathbb {m}_k^{(1)}\Big )-\Big (\beta ^S(k) \phi ^{(1)}+x_k\\ & +\omega +\delta \Big )S_k, t>t_8. \end{aligned}$$

Therefore, for \(0<\zeta _9<\min \{\frac{1}{9}, \zeta _8\}\), \(\exists t_9>t_8\), it obtains

$$\begin{aligned} S_k(t)\le & {\mathbb {X}}_k^{(2)}\triangleq \min \Big \{{\mathbb {X}}_k^{(1)}\\ & -\zeta _1, \frac{\omega +\delta \Big (1-\mathbb {z}_k^{(1)}-\mathbb {m}_k^{(1)}\Big )}{\beta ^S(k) \phi ^{(1)}+x_k+\omega +\delta }\Big \}, t>t_9. \end{aligned}$$

Similarly,

$$\begin{aligned} {\dot{V}}_k\le & x_kS_k-\beta ^V(k)\phi ^{(1)} V_k-(\omega +\delta ) V_k\\\le & x_k\Big (1-\mathbb {z}_k^{(1)}-\mathbb {m}_k^{(1)}\Big )-\Big (\beta ^V(k)\phi ^{(1)}+x_k\\ & +\omega +\delta \Big )V_k, t>t_9. \end{aligned}$$

As a consequence, for \(0<\zeta _{10}<\min \{\frac{1}{10}, \zeta _9\}\), \(\exists t_{10}>t_9\), one gets

$$\begin{aligned} V_k(t)\le & {\mathbb {Y}}_k^{(2)}\triangleq \min \Big \{{\mathbb {Y}}_k^{(1)}\\ & -\zeta _2,\frac{x_k\Big (1-\mathbb {z}_k^{(1)}-\mathbb {m}_k^{(1)}\Big )}{\beta ^V(k)\phi ^{(1)}+x_k+\omega +\delta }\Big \}, t>t_{10}. \end{aligned}$$

In addition,

$$\begin{aligned} {\dot{I}}_k\le & \Big (\beta ^S(k) S_k+\beta ^V(k)V_k\Big )\varPhi ^{(1)}-(\gamma +\omega ) I_k \\\le & \Big (\beta ^S(k) \Big (1-\mathbb {m}_k^{(1)}\Big )-\Big (\beta ^S(k) -\beta ^V(k)\Big ) \mathbb {y}_k^{(1)}\Big )\varPhi ^{(1)}\\ & -\Big (\beta ^S(k) \varPhi ^{(1)}+\gamma +\omega \Big )I_k, t>t_{10}. \end{aligned}$$

Hence, for \(0<\zeta _{11}<\min \{\frac{1}{11}, \zeta _{10}\}\), \(\exists t_{11}>t_{10}\), one has

$$\begin{aligned} & I_k(t)\le {\mathbb {Z}}_k^{(2)}\triangleq \min \Big \{{\mathbb {Z}}_k^{(1)}\\ & -\zeta _3,\frac{\Big (\beta ^S(k) \Big (1-\mathbb {m}_k^{(1)}\Big )-\Big (\beta ^S(k) -\beta ^V(k)\Big ) \mathbb {y}_k^{(1)}\Big )\varPhi ^{(1)}}{\beta ^S(k) \varPhi ^{(1)}+\gamma +\omega }\Big \},\\ & \quad t>t_{11}. \end{aligned}$$

Furthermore,

$$\begin{aligned} {\dot{R}}_k\le \gamma \Big (1-\mathbb {x}_k^{(1)}-\mathbb {y}_k^{(1)}\Big )-(\gamma +\omega ) R_k, t>t_{11}. \end{aligned}$$

Consequently, for \(0<\zeta _{12}<\min \{\frac{1}{12}, \zeta _{11}\}\), \(\exists t_{12}>t_{11}\), it has

$$\begin{aligned} R_k(t)\le & {\mathbb {M}}_k^{(2)}\triangleq \min \Big \{{\mathbb {M}}_k^{(1)}\\ & -\zeta _4,\frac{\gamma \Big (1-\mathbb {x}_k^{(1)}-\mathbb {y}_k^{(1)}\Big )}{\gamma +\omega }\Big \}, t>t_{12}. \end{aligned}$$

The first equation substituting \(V_k(t)\le {\mathbb {Y}}_k^{(2)}, I_k(t)\le {\mathbb {Z}}_k^{(2)},R_k(t)\le {\mathbb {M}}_k^{(2)}\) into system (9) gives

$$\begin{aligned} {\dot{S}}_k\ge & \omega -\beta ^S(k) \varPhi ^{(1)} S_k-x_kS_k+\delta \Big (1-S_k-I_k-R_k\Big )\\ & -\omega S_k \\\ge & \omega +\delta \Big (1-{\mathbb {Z}}_k^{(2)}-{\mathbb {M}}_k^{(2)}\Big )-\Big (\beta ^S(k) \varPhi ^{(1)}+x_k\\ & +\omega +\delta \Big )S_k, t>t_{12}. \end{aligned}$$

Therefore, for

$$0<\zeta _{13}<\min \Big \{\frac{1}{13}, \zeta _{12}, \frac{\omega +\delta (1-{\mathbb {Z}}_k^{(2)}-{\mathbb {M}}_k^{(2)})}{2(\beta ^S(k) \varPhi ^{(1)}+x_k+\omega +\delta )}\Big \},$$

\(\exists t_{13}>t_{12},\) when \(t>t_{13}\), \(S_k(t)\ge \mathbb {x}_k^{(2)}+\zeta _{13}\), where

$$\begin{aligned} \mathbb {x}_k^{(2)}= \max \Big \{\mathbb {x}_k^{(1)}+\zeta _5,\frac{\omega +\delta \Big (1-{\mathbb {Z}}_k^{(2)}-{\mathbb {M}}_k^{(2)}\Big )}{\beta ^S(k) \varPhi ^{(1)}+x_k+\omega +\delta }-2\zeta _{13}\Big \}. \end{aligned}$$

Similarly,

$$\begin{aligned} {\dot{V}}_k\ge & x_k\Big (1-V_k-I_k-R_k\Big )-\beta ^V(k)\varPhi ^{(1)} V_k-(\omega +\delta ) V_k\\\ge & x_k\Big (1-{\mathbb {Z}}_k^{(2)}-{\mathbb {M}}_k^{(2)}\Big )-\Big (\beta ^V(k)\varPhi ^{(1)}+x_k\\ & +\omega +\delta \Big )V_k, t>t_{13}. \end{aligned}$$

Thereby, for

$$0<\zeta _{14}<\min \Big \{\frac{1}{14}, \zeta _{13}, \frac{x_k(1-{\mathbb {Z}}_k^{(2)}-{\mathbb {M}}_k^{(2)})}{2(\beta ^V(k)\varPhi ^{(1)}+x_k+\omega +\delta )}\Big \},$$

\(\exists t_{14}>t_{13}\), for \(t>t_{14}\), \(V_k(t)\ge \mathbb {y}_k^{(2)}+\zeta _{14}\), where

$$\begin{aligned} \mathbb {y}_k^{(2)}=\max \Big \{\mathbb {y}_k^{(1)}+\zeta _6,\frac{x_k\Big (1-{\mathbb {Z}}_k^{(2)}-{\mathbb {M}}_k^{(2)}\Big )}{\beta ^V(k)\varPhi ^{(1)}+x_k+\omega +\delta }-2\zeta _{14}\Big \}. \end{aligned}$$

In addition,

$$\begin{aligned} {\dot{I}}_k\ge & \Big (\beta ^S(k) \Big (1-V_k-I_k-R_k\Big )+\beta ^V(k) V_k\Big )\phi ^{(1)}\\ & -(\gamma +\omega ) I_k \\\ge & \Big (\beta ^S(k) \Big (1-{\mathbb {M}}_k^{(2)}\Big )-\Big (\beta ^S(k) -\beta ^V(k)\Big ) {\mathbb {Y}}_k^{(2)}\Big )\phi ^{(1)}\\ & -\Big (\beta ^S(k) \phi ^{(1)}+\gamma +\omega \Big )I_k, t>t_{14}. \end{aligned}$$

As a consequence, for \(0<\zeta _{15}<\min \Big \{\frac{1}{15}, \zeta _{14},\)

\( \frac{(\beta ^S(k) (1-{\mathbb {M}}_k^{(2)})-(\beta ^S(k) -\beta ^V(k)) {\mathbb {Y}}_k^{(2)})\phi ^{(1)}}{2(\beta ^S(k) \zeta +\gamma +\omega )}\Big \}\), \(\exists t_{15}>t_{14}\), for \(t>t_{15}\), \(I_k(t)\ge \mathbb {z}_k^{(2)}+\zeta _{15}\), where

$$\begin{aligned} & \mathbb {z}_k^{(2)}=\max \Big \{\mathbb {z}_k^{(1)}+\zeta _7,\\ & \frac{\Big (\beta ^S(k) \Big (1-{\mathbb {M}}_k^{(2)}\Big )-\Big (\beta ^S(k) -\beta ^V(k)\Big ) {\mathbb {Y}}_k^{(2)}\Big )\phi ^{(1)}}{\beta ^S(k) \phi ^{(1)}+\gamma +\omega }-2\zeta _{15}\Big \}. \end{aligned}$$

Furthermore,

$$\begin{aligned} {\dot{R}}_k\ge \gamma \Big (1-{\mathbb {X}}_k^{(2)}-{\mathbb {Y}}_k^{(2)}\Big )-(\gamma +\omega ) R_k, t>t_{15}. \end{aligned}$$

Hence, for \(0<\zeta _{16}<\min \Big \{\frac{1}{16}, \zeta _{15}, \frac{\gamma (1-{\mathbb {X}}_k^{(2)}-{\mathbb {Y}}_k^{(2)})}{2(\gamma +\omega )}\Big \}\), \(\exists t_{16}>t_{15}\), when \(t>t_{16}\), \(R_k(t)\ge \mathbb {m}_k^{(2)}+\zeta _{16}\), where

$$\begin{aligned} \mathbb {m}_k^{(2)}=\max \Big \{\mathbb {m}_k^{(1)}+\zeta _7, \frac{\gamma \Big (1-{\mathbb {X}}_k^{(2)}-{\mathbb {Y}}_k^{(2)}\Big )}{\gamma +\omega }-2\zeta _{16}\Big \}. \end{aligned}$$

Consequently, \(0<\phi ^{(2)}\le \varTheta (t)\le \varPhi ^{(2)}, t>t_{16}\).

It is similarly possible to perform the \(\ell \)-th step and obtain 8 sequences: \(\big \{{\mathbb {X}}_k^{(\ell )}\big \}, \big \{{\mathbb {Y}}_k^{(\ell )}\big \}\), \(\big \{{\mathbb {Z}}_k^{(\ell )}\big \}\), \(\big \{{\mathbb {M}}_k^{(\ell )}\big \}\), \(\big \{\mathbb {x}_k^{(\ell )}\big \}, \big \{\mathbb {y}_k^{(\ell )}\big \}\), \(\big \{\mathbb {z}_k^{(\ell )}\big \}\) and \(\big \{\mathbb {m}_k^{(\ell )}\big \}\). Due to the fact that the first four are monotonically increasing and the last four are strictly decreasing, there is a large positive integer N, when \(\ell >N\),

$$\begin{aligned} \begin{array}{l} {\mathbb {X}}_k^{(\ell )}=\frac{\omega +\delta \Big (1-\mathbb {z}_k^{(\ell -1)}-\mathbb {m}_k^{(\ell -1)}\Big )}{\beta ^S(k) \phi ^{(\ell -1)}+x_k+\omega +\delta }+\zeta _{8\ell -7},\\ {\mathbb {Y}}_k^{(\ell )}=\frac{x_k\Big (1-\mathbb {z}_k^{(\ell -1)}-\mathbb {m}_k^{(\ell -1)}\Big )}{\beta ^V(k)\phi ^{(\ell -1)}+x_k+\omega +\delta }+\zeta _{8\ell -6},\\ {\mathbb {Z}}_k^{(\ell )}=\frac{\Big (\beta ^S(k) \Big (1-\mathbb {m}_k^{(\ell -1)}\Big )-\Big (\beta ^S(k) -\beta ^V(k)\Big ) \mathbb {y}_k^{(\ell -1)}\Big )\varPhi ^{(\ell -1)}}{\beta ^S(k) \varPhi ^{(\ell -1)}+\gamma +\omega }\\ \hspace{1.2cm}+\zeta _{8\ell -5},\\ {\mathbb {M}}_k^{(\ell )}=\frac{\gamma \Big (1-\mathbb {x}_k^{(\ell -1)}-\mathbb {y}_k^{(\ell -1)}\Big )}{\gamma +\omega }+\zeta _{8\ell -4},\\ \mathbb {x}_k^{(\ell )}=\frac{\omega +\delta \Big (1-{\mathbb {Z}}_k^{(\ell )}-{\mathbb {M}}_k^{(\ell )}\Big )}{\beta ^S(k) \varPhi ^{(\ell -1)}+x_k+\omega +\delta }-2\zeta _{8\ell -3},\\ \mathbb {y}_k^{(\ell )}=\frac{x_k\Big (1-{\mathbb {Z}}_k^{(\ell )}-{\mathbb {M}}_k^{(\ell )}\Big )}{\beta ^V(k)\varPhi ^{(\ell -1)}+x_k+\omega +\delta }-2\zeta _{8\ell -2},\\ \mathbb {z}_k^{(\ell )}=\frac{\Big (\beta ^S(k) \Big (1-{\mathbb {M}}_k^{(\ell )}\Big )-\Big (\beta ^S(k) -\beta ^V(k)\Big ) {\mathbb {Y}}_k^{(\ell )}\Big )\phi ^{(\ell -1)}}{\beta ^S(k) \phi ^{(\ell -1)}+\gamma +\omega }\\ \hspace{1.2cm}-2\zeta _{8\ell -1},\\ \mathbb {m}_k^{(\ell )}=\frac{\gamma \Big (1-{\mathbb {X}}_k^{(\ell )}-{\mathbb {Y}}_k^{(\ell )}\Big )}{\gamma +\omega }-2\zeta _{8\ell }. \end{array} \end{aligned}$$
(20)

Then,

$$\begin{aligned} \mathbb {x}_k^{(\ell )}\le & S_k(t)\le {\mathbb {X}}_k^{(\ell )}, \mathbb {y}_k^{(\ell )}\le V_k(t)\le {\mathbb {Y}}_k^{(\ell )},\end{aligned}$$
(21)
$$\begin{aligned} \mathbb {z}_k^{(\ell )}\le & I_k(t)\le {\mathbb {Z}}_k^{(\ell )}, \mathbb {m}_k^{(\ell )}\le R_k(t)\le {\mathbb {M}}_k^{(\ell )}, t>t_{8\ell }.\nonumber \\ \end{aligned}$$
(22)

Observe that \(0<\zeta _{\ell }<\frac{1}{\ell }\), then \(\zeta _{\ell }\rightarrow 0\) when \(\ell \rightarrow \infty \). For the ten sequences of (19) and (20), when \(i\rightarrow \infty \) and \(\ell \rightarrow \infty \), it has

$$\begin{aligned} & \lim _{i\rightarrow \infty }\varPhi ^{(i)}=\frac{1}{\left\langle k\right\rangle }\sum _{k=n}^{m}kP(k){\mathbb {Z}}_k\triangleq \varPhi ,\nonumber \\ & \lim _{i\rightarrow \infty }\phi ^{(i)}=\frac{1}{\left\langle k\right\rangle }\sum _{k=n}^{m}kP(k)\mathbb {z}_k\triangleq \phi . \end{aligned}$$
(23)
$$\begin{aligned} & \lim \limits _{\ell \rightarrow \infty }{\mathbb {X}}_k^{(\ell )}\nonumber \\ & =\frac{\omega \Big (\beta ^V(k)\varPhi +\omega +\delta \Big )}{\Big (\beta ^S(k) \varPhi +\omega +x_k\Big )\Big (\beta ^V(k)\varPhi +\omega +\delta \Big )-x_k\delta }\triangleq {\mathbb {X}}_k,\nonumber \\ & \lim \limits _{\ell \rightarrow \infty }{\mathbb {Y}}_k^{(\ell )}\nonumber \\ & =\frac{\omega x_k}{\Big (\beta ^S(k) \varPhi +\omega +x_k\Big )\Big (\beta ^V(k)\varPhi +\omega +\delta \Big )-x_k\delta }\triangleq {\mathbb {Y}}_k,\nonumber \\ & \lim \limits _{\ell \rightarrow \infty }{\mathbb {Z}}_k^{(\ell )}\nonumber \\ & =\frac{\omega \Big (\beta ^S(k) \Big (\beta ^V(k)\varPhi +\omega +\delta \Big )+x_k\beta ^V(k)\Big )\varPhi }{(\gamma +\omega )\Big (\Big (\beta ^S(k) \varPhi +\omega +x_k\Big )\Big (\beta ^V(k)\varPhi +\omega +\delta \Big )-x_k\delta \Big )}\triangleq {\mathbb {Z}}_k,\nonumber \\ & \lim \limits _{\ell \rightarrow \infty }{\mathbb {M}}_k^{(\ell )}\nonumber \\ & =\frac{\gamma \Big (\beta ^S(k) \Big (\beta ^V(k)\varPhi +\omega +\delta \Big )+\beta ^V(k)\Big )\varPhi }{(\gamma +\omega )\Big (\Big (\beta ^S(k) \varPhi +\omega +x_k\Big )\Big (\beta ^V(k)\varPhi +\omega +\delta \Big )-x_k\delta \Big )}\triangleq {\mathbb {M}}_k,\nonumber \\ & \lim \limits _{\ell \rightarrow \infty }\mathbb {x}_k^{(\ell )}=\frac{\omega \Big (\beta ^V(k)\phi +\omega +\delta \Big )}{\Big (\beta ^S(k) \phi +\omega +x_k\Big )\Big (\beta ^V(k)\phi +\omega +\delta \Big )-x_k\delta }\triangleq \mathbb {x}_k,\nonumber \\ & \lim \limits _{\ell \rightarrow \infty }\mathbb {y}_k^{(\ell )}\nonumber \\ & =\frac{\omega x_k}{\Big (\beta ^S(k) \phi +\omega +x_k\Big )\Big (\beta ^V(k)\phi +\omega +\delta \Big )-x_k\delta }\triangleq \mathbb {y}_k,\nonumber \\ & \lim \limits _{\ell \rightarrow \infty }\mathbb {z}_k^{(\ell )}\nonumber \\ & =\frac{\omega \Big (\beta ^S(k) \Big (\beta ^V(k)\phi +\omega +\delta \Big )+x_k\beta ^V(k)\Big )\phi }{(\gamma +\omega )\Big (\Big (\beta ^S(k) \phi +\omega +x_k\Big )\Big (\beta ^V(k)\phi +\omega +\delta \Big )-x_k\delta \Big )}\triangleq \mathbb {z}_k,\nonumber \\ & \lim \limits _{\ell \rightarrow \infty }\mathbb {m}_k^{(\ell )}\nonumber \\ & =\frac{\gamma \Big (\beta ^S(k) \Big (\beta ^V(k)\phi +\omega +\delta \Big )+\beta ^V(k)\Big )\phi }{(\gamma +\omega )\Big (\Big (\beta ^S(k) \phi +\omega +x_k\Big )\Big (\beta ^V(k)\phi +\omega +\delta \Big )-x_k\delta \Big )}\triangleq \mathbb {m}_k.\nonumber \\ \end{aligned}$$
(24)

Substituting (24) into (23)

$$\begin{aligned} \begin{array}{l} \frac{1}{\left\langle k\right\rangle }\sum \limits _{k=n}^{m}\frac{kP(k)\omega \Big (\beta ^S(k) \Big (\beta ^V(k)\varPhi +\omega +\delta \Big )+x_k\beta ^V(k)\Big )}{(\gamma +\omega )\Big (\Big (\beta ^S(k) \varPhi +\omega +x_k\Big )\Big (\beta ^V(k)\varPhi +\omega +\delta \Big )-x_k\delta \Big )}=1,\\ \end{array} \\ \begin{array}{l} \frac{1}{\left\langle k\right\rangle }\sum \limits _{k=n}^{m}\frac{kP(k)\omega \Big (\beta ^S(k) \Big (\beta ^V(k)\phi +\omega +\delta \Big )+x_k\beta ^V(k)\Big )}{(\gamma +\omega )\Big (\Big (\beta ^S(k) \phi +\omega +x_k\Big )\Big (\beta ^V(k)\phi +\omega +\delta \Big )-x_k\delta \Big )}=1. \end{array} \end{aligned}$$

Subtracting the above two equations, one gets

$$\begin{aligned} \frac{1}{\left\langle k\right\rangle }\sum _{k=n}^{m}\frac{kP(k)\varXi _1(k)(\varPhi -\phi )}{\varXi _2(k)}=0, \end{aligned}$$

where

$$\begin{aligned} \varXi _1(k)= & \Big (\beta ^S(k) (\omega +\delta )+x_k\beta ^V(k)\Big )\beta ^S(k) \beta ^V(k)(\varPhi +\phi )\\ & +\Big (\beta ^S(k) (\omega +\delta )+x_k\beta ^V(k)\Big )\Big (\beta ^S(k) (\omega +\delta )\\ & +\beta ^V(k)(\omega +x_k)\Big )+\Big (\beta ^S(k) \beta ^V(k)\Big )^2\varPhi \phi \\ & +\beta ^S(k) \beta ^V(k)(\omega ^2+\omega x_k+\omega \delta ),\\ \varXi _2(k)= & \Big ((\gamma +\omega )\Big (\Big (\beta ^S(k) \varPhi +\omega +x_k\Big )\Big (\beta ^V(k)\varPhi +\omega +\delta \Big )\\ & -x_k\delta \Big )\Big )\Big ((\gamma +\omega )\Big (\Big (\beta ^S(k) \phi +\omega +x_k\Big )\\ & \times \Big (\beta ^V(k)\phi +\omega +\delta \Big )-x_k\delta \Big )\Big ). \end{aligned}$$

Therefore, \(\varPhi =\phi \) which is equivalent to \({\mathbb {X}}_k=\mathbb {x}_k, {\mathbb {Y}}_k=\mathbb {y}_k, {\mathbb {Z}}_k=\mathbb {z}_k\) and \({\mathbb {M}}_k=\mathbb {m}_k\). Therefore, based on (21), it gives

$$\begin{aligned} \lim _{t\rightarrow \infty }S_k(t)= & {\mathbb {X}}_k=\mathbb {x}_k,\quad \lim _{t\rightarrow \infty }V_k(t)={\mathbb {Y}}_k=\mathbb {y}_k,\\ \lim _{t\rightarrow \infty }I_k(t)= & {\mathbb {Z}}_k=\mathbb {z}_k,\quad \lim _{t\rightarrow \infty }R_k(t)={\mathbb {M}}_k=\mathbb {m}_k. \end{aligned}$$

On the basis of (10), it yields \({\mathbb {X}}_k=S_k^*, {\mathbb {Y}}_k=V_k^*\), \({\mathbb {Z}}_k=I_k^*\) and \({\mathbb {M}}_k=R_k^*\). This completes the proof of the theorem.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, H., Wu, X. Epidemic dynamics of complex networks based on information dependence. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-10548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-10548-4

Keywords