Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Novel polynomial Bernstein bases and Bézier curves based on a general notion of polynomial blossoming

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We introduce the G-blossom of a polynomial by altering the diagonal property of the classical blossom, replacing the identity function by arbitrary linear functions G=G(t). By invoking the G-blossom, we construct G-Bernstein bases and G-Bézier curves and study their algebraic and geometric properties. We show that the G-blossom provides the dual functionals for the G-Bernstein basis functions and we use this dual functional property to prove that G-Bernstein basis functions form a partition of unity and satisfy a Marsden identity. We also show that G-Bézier curves share several other properties with classical Bézier curves, including affine invariance, interpolation of end points, and recursive algorithms for evaluation and subdivision. We investigate the effect of the linear functions G on the shape of the corresponding G-Bézier curves, and we derive some necessary and sufficient conditions on the linear functions G which guarantee that the corresponding G-Bézier curves are of Pólya type and variation diminishing. Finally we prove that the control polygons generated by recursive subdivision converge to the original G-Bézier curve, and we derive the geometric rate of convergence of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ait-Haddou, R., Sakane, Y., Nomura, T.: Chebyshev blossoming in Muntz spaces: Toward shaping with Young diagrams. J. Comput. Appl. Math. 247, 172–208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Goldman, R.: Pólya’s urn model and computer aided geometric design. SIAM J. Alg. Disc. Meth. 6, 1–28 (1985)

    Article  MATH  Google Scholar 

  3. Goldman, R.: Pyramid Algorithms, A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Elsevier Science (2003)

  4. Goldman, R., Barry, P.: Recursive polynomial curve schemes and computer-aided geometric design. Constr. Approx. 6, 65–96 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldman, R., Barry, P.: Shape parameter deletion for Pólya curves. Numer. Algorithms 1, 121–137 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldman, R., Simeonov, P.: Quantum Bernstein bases and quantum Bézier curves. J. Comput. Appl. Math. 288, 284–303 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldman, R., Simeonov, P.: A general theory of quantum B-splines. preprint (2015)

  8. Gonsor, D., Neamtu, M.: Non-polynomial polar forms. In: Curves and Surfaces in Geometric Design (Chamonix- Mont-Blanc, 1993), pp. 193–200. A K Peters, Wellesley, MA (1994)

  9. Lewanowicz, S., Woźny, P.: Generalized Bernstein polynomials. BIT 44, 63–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lyche, T.: Trigonometric splines; a survey with new results. In: Shape Preserving Representations in Computer Aided Geometric Design, pp. 201–227. Nova Science Publishers, Inc., New York (1999)

  11. Mazure, M.-L.: Chebyshev spaces with polynomial blossoms. Adv. Comput. Math. 10(3–4), 219–238 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mazure, M.-L.: Blossoming: A geometrical approach. Constr. Approx. 15, 33–68 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mazure, M.-L.: Ready-to-blossom bases in Chebyshev spaces. In: Topics in Multivariate Approximation and Interpolation. Stud. Comput. Math., vol. 12, pp. 109–148. Elsevier B. V., Amsterdam (2006)

  14. Nowak, G.: Approximation properties for generalized Bernstein polynomials. J. Math. Anal. Appl. 350, 50–55 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Oruç, H., Phillips, G.M.: A generalization of the Bernstein polynomials. Proc. Edinb. Math. Soc. 42, 403–413 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oruç, H., Phillips, G.M.: q-Bernstein polynomials and Bézier curves. J. Comput. Appl. Math. 151, 1–12 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Phillips, G.M.: A de Casteljau algorithm for generalized Bernstein polynomials. BIT 37, 232–236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Phillips, G.M.: Bernstein polynomials based on the q-integers. Ann. Numer. Math. 4, 511–518 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Phillips, G.M.: Interpolation and Approximation by Polynomials. CMS Books in Mathematics. Springer-Verlag, New York (2003)

    Book  Google Scholar 

  20. Phillips, G.M.: A survey of results on the q-Bernstein polynomials. IMA J. Numer. Anal. 30, 277–288 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramshaw, L.: Blossoming: A connect-the-dots approach to splines. Digital Equipment Corp., Systems Research Center, Technical Report no. 19 (1987)

  22. Ramshaw, L.: Bézier and B-splines as multiaffine maps. In: Earnshaw, R.A. (ed.) Theoretical Foundations of Computer Graphics and CAD. NATO ASI Series F, vol. 40, pp 757–776. Springer-Verlag, New York (1988)

    Chapter  Google Scholar 

  23. Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Des. 6, 323–358 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Simeonov, P., Goldman, R.: Quantum B-splines. BIT 53, 193–223 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Simeonov, P., Zafiris, V., Goldman, R.: h-Blossoming: A new approach to algorithms and identities for h-Bernstein bases and h-Bézier curves. Comput. Aided Geom. Des. 28, 549–565 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Simeonov, P., Zafiris, V., Goldman, R.: q-Blossoming: A new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves. J. Approx. Theory 164, 77–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stancu, D.: Approximation of functions by a new class of linear polynomial operators. Rev. Roumaine Math. Pures Appl. 13, 1173–1194 (1968)

    MathSciNet  MATH  Google Scholar 

  28. Stancu, D.: Generalized Bernstein approximating operators. Itinerant seminar on functional equations, approximation and convexity. Cluj-Napoca, 185–192 (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen Simeonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldman, R., Simeonov, P. Novel polynomial Bernstein bases and Bézier curves based on a general notion of polynomial blossoming. Numer Algor 72, 605–634 (2016). https://doi.org/10.1007/s11075-015-0059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0059-6

Keywords

Mathematics Subject Classifications (2010)