Abstract
In this paper, the bias-free operational uni-traveling-carrier photodiode (UTC-PD) for terahertz wave generation is designed via physics-based simulation. The physics-based model is established at first and then the reliability of the simulation is demonstrated by comparison to previously reported experimental results. The epitaxial layers of the UTC-PD are analyzed and investigated to improve its bandwidth and output-power simultaneously. By optimizing the spacers and the collector, and using a combination of optimal graded-doping profile and graded-bandgap material for the absorber, the 3-dB bandwidth and the peaked output-power of the UTC-PD are improved by 36.5% and 2.262 dB, respectively. The 3-dB bandwidth of the optimized bias-free operational UTC-PD with mesa diameter of 8, 6, 5, 4 and 3-μm can achieve 106, 137.67, 158.3, 183 and 211 GHz, respectively.
Similar content being viewed by others
References
Angkaew, T., Umezawa, T., Kawanishi, T.: Crosstalk reduction for large scale photonic integrated circuits. In: Proceedings of IEEE International Topical Meeting on I Microwave Photonics (MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP), paper TuEB-9. IEEE (2014)
Chen, H., Beling, A., Pan, H., Campbell, J.C.: A method to estimate the junction temperature of photodetectors operating at high photocurrent. IEEE J. Quantum Electron. 45(12), 1537–1541 (2009)
Cherry, S.: Edholm’s law of bandwidth. IEEE Spectr. 41(7), 58–60 (2004)
Cui, D., Hubbard, S.M., Pavlidis, D., Eisenbach, A., Chelli, C.: Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors. Semicond. Sci. Technol. 17(6), 503–509 (2002)
Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107(11), Art. 111101 (2010)
Ghione, G.: Semiconductor Devices for High-Speed Optoelectronics. United States of America by Cambridge University Press, Chap. 4 (2009)
Huang, Y.-L., Sun, C.-K.: Nonlinear saturation behaviors of high-speed p-i-n photodetectors. J. Lightwave Technol. 18(2), 203–212 (2000a)
Huang, Y.-L., Sun, C.-K.: Nonlinear saturation behaviors of high-speed p-i-n photodetectors. J. Lightwave Technol. 18(2), 203–212 (2000b)
Ishibashi, T., Furuta, T., Fushimi, H., Kodama, S., Ito, H., Nagatsuma, T., et al.: InP/InGaAs uni-traveling-carrier photodiodes. IEICE Trans. Electron. E83-C(6), 938–949 (2000)
Ito, H., Yoshimatsu, T., Yamamoto, H., Ishibashi, T.: Broadband photonic terahertz-wave emitter integrating UTC-PD and novel planar antenna. In: Proceedings of the SPIE, vol. 8716, Art. 871602 (2013)
Ito, H., Furuta, T., Kodama, S., Ishibashi, T.: InP/InGaAs uni-travelling-carrier photodiode with a 310 GHz bandwidth. Electron. Lett. 36(21), 1809–1810 (2000)
Ito, H., Kodama, S., Muramoto, Y., Furuta, T., Nagatsuma, T., Ishibashi, T.: High-speed and high-output InP/InGaAs uni-traveling carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004a)
Ito, H., Kodama, S., Muramoto, Y., Furuta, T., Nagatsuma, T., Ishibashi, T.: High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004b)
Kleine-Ostmann, T., Nagatsuma, T.: A review on terahertz communications research. J. Infrared Millim Terahertz Waves 32(2), 143–171 (2011)
Li, Z., Pan, H., Chen, H., Beling, A., Campbell, J.C.: High-saturation-current modified uni-traveling-carrier photodiode with cliff layer. IEEE J. Quantum Electron. 46(5), 626–632 (2010)
Liu, T., Huang, Y., Chen, Q., Fei, J., Liu, K., Duan, X., Ren, X.: Transient simulation of UTC-PD using drift-diffusion model. In: Proceedings of IEEE International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), pp. 139–140. IEEE, (2017)
Maloney, T.J., Frey, J.: Transient and steady-state electron transport properties of GaAs and InP. J. Appl. Phys. 48(2), 781–787 (1977)
Nagatruma, T., Carpintero, G.: Recent progress and future prospect of photonics-enabled terahertz communications research. IEICE Trans. Electron. E98-C(12), 1060–1070 (2015)
Pan, H., Li, Z., Beling, A., Campbell, J.C.: Measurement and modeling of high-linearity modified uni-traveling carrier photodiode with highly-doped absorber. Opt. Express 17(22), 20222–20226 (2009)
Preu, S., Döhler, G.H., Malzer, S., Wang, L.J., Gossard, A.C.: Tunable, continuous-wave terahertz photomixer sources and applications. J. Appl. Phys. 109(6), Art. 061301 (2011)
Seeds, A.J., Shams, H., Fice, M.J., Renaud, C.C.: TeraHertz photonics for wireless communications. J. Lightwave Technol. 33(3), 579–587 (2014)
Shimizu, N., Watanabe, N., Furuta, T., Ishibashi, T.: InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz. IEEE Photonics Technol. Lett. 10(3), 412–414 (1998)
Umezawa, T., Akahane, K., Yamamoto, N., Inagaki, K., Kanno, A., Kawanishi, T.: Zero-bias operational ultra-broadband UTC-PD above 110 GHz for high symbol rate PD-array in high-density photonic integration. In: Proceedings of IEEE Conference on Optical Fiber Communications Conference and Exhibition, Paper M3C.7, IEEE (2015)
Umezawa, T., Kanno, A., Kashima, K., Matsumoto, A., Akahane, K., Yamamoto, N., Kawanishi, T.: Bias-free operational UTC-PD above 110 GHz and its application to high baud rate fixed-fiber communication and W-band photonic wireless communication. J. Lightwave Technol. 34(13), 3138–3147 (2016)
Wang, X., Duan, N., Chen, H., Campbell, J.C.: InGaAs–InP photodiodes with high responsivity and high saturation power. IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007)
Wun, J.-M., Lai, C.-H., Chen, N.-W., Bowers, J.E., Shi, J.-W.: Flip-chip bonding packaged THz photodiode with broadband high-power performance. IEEE Photon. Technol. Lett. 26(24), 2462–2464 (2014)
Acknowledgements
This work was supported by the Joint Laboratory of Quantum Optoelectronics and the Theory of Bivergentum and Beijing International Scientific and Technological Cooperation Base of Information Optoelectronics and Nano-heterogeneous Structure. This work was funded by Natural National Science Foundation of China (NSFC) (61574019, 61674018, 61274020), and the Natural Science Foundation of Beijing Municipality (No. 4132069).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, T., Huang, Y., Niu, H. et al. Design of bias-free operational uni-traveling carrier photodiodes for terahertz wave generation. Opt Quant Electron 50, 284 (2018). https://doi.org/10.1007/s11082-018-1550-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11082-018-1550-9