Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exact solutions for the improved mKdv equation with conformable derivative by using the Jacobi elliptic function expansion method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The goal of this paper is to find exact solutions to the improved modified Korteweg-de Vries (mKdV) equation with a conformable derivative using the Jacobi elliptic function expansion method. The improved mKdV equation is a prominent mathematical model in the realm of nonlinear partial differential equations, with widespread applicability in diverse scientific and engineering domains. This study leverages the well-known effectiveness of the Jacobi elliptic function expansion method in solving nonlinear differential equations, specifically focusing on the intricacies of the improved mKdV problem. The investigation reveals innovative and explicit solutions, providing insight into the dynamics of the related physical processes. This paper provides a comprehensive examination of these solutions, emphasizing their distinct features and depictions using Jacobi elliptic functions. These findings are especially advantageous for specialists in the fields of nonlinear science and mathematical physics, providing significant insights into the behavior and development of nonlinear waves in various physical situations. This work also contributes to our knowledge of the improved mKdV equation and shows that the Jacobi elliptic function expansion method is a useful tool for solving complex nonlinear situations. The study is enhanced with graphical illustrations of various solutions, which further enhance its analytical complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

  • Abdulhameed, M., Muhammad, M.M., Gital, A.Y., Yakubu, D.G., Khan, I.: Effect of fractional derivatives on transient MHD flow and radiative heat transfer in a micro-parallel channel at high zeta potentials. Physica A: Stat. Mech. Appl. 519, 42–71 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Alquran, M.: New interesting optical solutions to the quadratic–cubic Schrodinger equation by using the Kudryashov-expansion method and the updated rational sine–cosine functions. Opt. Quant. Electronics 54(10), 666 (2022)

    Article  Google Scholar 

  • Alquran, M.: Classification of single-wave and bi-wave motion through fourth-order equations generated from the Ito model. Phys. Scr. (2023)

  • Alquran, M., Alhami, R.: Analysis of lumps, single-stripe, breather-wave, and two-wave solutions to the generalized perturbed-KdV equation by means of Hirota’s bilinear method. Nonlinear Dyn. 109(3), 1985–1992 (2022)

    Article  Google Scholar 

  • Alquran, M., Ali, M., Jadallah, H.: New topological and non-topological unidirectional-wave solutions for the modified-mixed KdV equation and bidirectional-waves solutions for the Benjamin Ono equation using recent techniques. J. Ocean Eng. Sci. 7(2), 163–169 (2022)

    Article  Google Scholar 

  • Alquran, M., Najadat, O., Ali, M., Qureshi, S.: New kink-periodic and convex–concave-periodic solutions to the modified regularized long wave equation by means of modified rational trigonometric–hyperbolic functions. Nonlinear Eng. 12(1), 20220307 (2023a)

    Article  ADS  Google Scholar 

  • Alquran, M., Ali, M., Gharaibeh, F., Qureshi, S.: Novel investigations of dual-wave solutions to the Kadomtsev-Petviashvili model involving second-order temporal and spatial–temporal dispersion terms. Partial Differ. Equations Appl. Math. 8, 100543 (2023b)

    Article  Google Scholar 

  • Bekir, A., Güner, Ö.: Exact solutions of nonlinear fractional differential equations by (G′/G)-expansion method. Chin. Phys. B 22(11), 110202 (2013)

    Article  Google Scholar 

  • Chang, A., Sun, H., Zhang, Y., Zheng, C., Min, F.: Spatial fractional Darcy’s law to quantify fluid flow in natural reservoirs. Physica A: Stat. Mech. Appl. 519, 119–126 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Dubey, V.P., Kumar, R., Kumar, D.: Analytical study of fractional Bratu-type equation arising in electro-spun organic nanofibers elaboration. Physica A: Stat. Mech. Appl. 521, 762–772 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53, 475–485 (2016)

    Article  MathSciNet  Google Scholar 

  • Gepreel, K.A., Omran, S.: Exact solutions for nonlinear partial fractional differential equations. Chin. Phys. B 21(11), 110204 (2012)

    Article  Google Scholar 

  • Ghanbari, B.: Abundant soliton solutions for the Hirota-Maccari equation via the generalized exponential rational function method. Modern Phys. Lett. B 33(09), 1950106 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Ghanbari, B., Baleanu, D.: New optical solutions of the fractional Gerdjikov-Ivanov equation with conformable derivative. Front. Phys. 8, 167 (2020)

    Article  Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F.: Optical soliton solutions for the nonlinear Radhakrishnan–Kundu–Lakshmanan equation. Modern Phys. Lett. B 33(32), 1950402 (2019a)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F.: New exact optical soliton solutions for nonlinear Schrödinger equation with second-order spatio-temporal dispersion involving M-derivative. Modern Phys. Lett. B 33(20), 1950235 (2019b)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Ghanbari, B., Kuo, C.K.: New exact wave solutions of the variable-coefficient (1+ 1)-dimensional Benjamin-Bona-Mahony and (2+ 1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations via the generalized exponential rational function method. Euro. Phys. J. Plus 134(7), 334 (2019)

    Article  Google Scholar 

  • Goulart, A.G., Lazo, M.J., Suarez, J.M.S.: A new parameterization for the concentration flux using the fractional calculus to model the dispersion of contaminants in the Planetary Boundary Layer. Physica A: Stat. Mech. Appl. 518, 38–49 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Guo, S., Mei, L., Li, Y., Sun, Y.: The improved fractional sub-equation method and its applications to the space–time fractional differential equations in fluid mechanics. Phys. Lett. A 376(4), 407–411 (2012)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Hirota, R., Satsuma, J.: Soliton solutions of a coupled Korteweg-de Vries equation. Phys. Lett. A 85(8–9), 407–408 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • Hwang, C. K., Lu, T. T.: The exact solutions of certain linear partial difference equations. arXiv preprint arXiv:2301.09501 (2023).

  • Inc, M.: The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345(1), 476–484 (2008)

    Article  MathSciNet  Google Scholar 

  • Inc, M., Ergüt, M.: Periodic wave solutions for the generalized shallow water wave equation by the improved Jacobi elliptic function method. Appl. Math. E-Notes [electronic only] 5, 89–96 (2005)

    MathSciNet  Google Scholar 

  • Inç, M., Evans, D.J.: A study for obtaining more solitary pattern solutions of fifth-order KdV-like equations. Int. J. Comp. Math. 81(4), 473–482 (2004)

    Article  MathSciNet  Google Scholar 

  • Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov-Kuznetsov equation. Mathematics 8(7), 1127 (2020)

    Article  Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  • Khan, M.I., Asghar, S., Sabi’u, J.: Jacobi elliptic function expansion method for the improved modified kortwedge-de vries equation. Opt. Quant. Electr. 54(11), 734 (2022)

    Article  Google Scholar 

  • Khater, M., Ghanbari, B.: On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques. Euro. Phys. J. Plus 136(4), 1–28 (2021)

    Article  Google Scholar 

  • Khresat, H., El-Ajou, A., Al-Omari, S., Alhazmi, S.E., Oqielat, M.A.N.: Exact and approximate solutions for linear and nonlinear partial differential equations via laplace residual power series method. Axioms 12(7), 694 (2023)

    Article  Google Scholar 

  • Lu, B.: Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys. Lett. A 376(28–29), 2045–2048 (2012)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Özkan, A., Özkan, E.M., Yildirim, O.: On exact solutions of some space–time fractional differential equations with m-truncated derivative. Fractal Fractional 7(3), 255 (2023)

    Article  Google Scholar 

  • Qiao, J.M., Zhang, R.F., Yue, R.X., Rezazadeh, H., Seadawy, A.R.: Three types of periodic solutions of new (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation via bilinear neural network method. Math. Methods Appl. Sci. 9, 5612–5621 (2022)

    Article  MathSciNet  Google Scholar 

  • Řehák, P.: Superlinear solutions of sublinear fractional differential equations and regular variation. Fract. Calculus Appl. Anal. 26(3), 989–1015 (2023)

    Article  MathSciNet  Google Scholar 

  • Rezazadeh, H.: New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Optik 167, 218–227 (2018)

    Article  ADS  Google Scholar 

  • Sait, S. A. N.: Extended Jacobi elliptic function solutions for general boussinesq systems. Rev. Mexicana de Física 69(2 Mar–Apr), 021401-1 (2023).

  • Tang, B., He, Y., Wei, L., Zhang, X.: A generalized fractional sub-equation method for fractional differential equations with variable coefficients. Phys. Lett. A 376(38–39), 2588–2590 (2012)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Wen, C., Zheng, B.: A new fractional sub-equation method for fractional partial differential equations. WSEAS Trans. Math. 12(5), 564–571 (2013)

    Google Scholar 

  • Younas, U., Ren, J., Akinyemi, L., Rezazadeh, H.: On the multiple explicit exact solutions to the double-chain DNA dynamical system. Math. Methods Appl. Sci. 46(6), 6309–6323 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, S., Zhang, H.Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375(7), 1069–1073 (2011)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Zheng, B.: (G′/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58(5), 623 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Zheng, B.: A new fractional Jacobi elliptic equation method for solving fractional partial differential equations. Adv. Differ. Equations 2014(1), 1–11 (2014)

    Article  MathSciNet  Google Scholar 

  • Zheng, B., Wen, C.: Exact solutions for fractional partial differential equations by a new fractional sub-equation method. Adv. Differ. Equations 2013, 1–12 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

AF: Writing: Original Draft, Writing: Review and Editing, Software, Conceptualisation. MIK: Writing: Review and Editing, Methodology, Formal Analysis. WXM: Revised and Editing.

Corresponding author

Correspondence to Aamir Farooq.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, A., Khan, M.I. & Ma, W.X. Exact solutions for the improved mKdv equation with conformable derivative by using the Jacobi elliptic function expansion method. Opt Quant Electron 56, 542 (2024). https://doi.org/10.1007/s11082-023-06258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06258-7

Keywords