Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Inverse scattering transform for a nonlinear lattice equation under non-vanishing boundary conditions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is the inverse scattering transform for a nonlinear lattice equation, which can be used to study the fluctuation of nonlinear optics and dynamics of anharmonic lattices. Symmetries, analyticities and asymptotic behaviors of eigenfunctions will be obtained in the direct scattering analysis to establish a suitable Riemann-Hilbert problem. The Riemann-Hilbert problem of the scattering data with simple poles will be constructed. In particular, by using the Laurent expansion and the generalized residue condition to solve the Riemann-Hilbert problem, the determinant representation of N-soliton solution for the equation will be presented. One-dark-soliton under non-vanishing boundary conditions will be displayed through some representative reflectionless potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availibility

No data associated in the manuscript.

References

  • Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  • Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations. J. Math. Phys. 16(3), 598–603 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  • Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations and Fourier analysis. J. Math. Phys. 17(6), 1011–1018 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  • Ablowitz, M.J., Ladik, J.F.: On the solution of a class of nonlinear partial difference equations. Stud. Appl. Math. 57(1), 1–12 (1977)

    Article  MathSciNet  Google Scholar 

  • Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Method for solving the Sine-Gordon equation. Phys. Rev. Lett. 30(25), 1262–1264 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  • Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)

    Article  MathSciNet  Google Scholar 

  • Ablowitz, M.J., Biondini, G., Prinari, B.: Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with non-vanishing boundary conditions. Inverse Probl. 23(4), 1711–1758 (2007)

    Article  ADS  Google Scholar 

  • Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Discrete nonlocal nonlinear Schrödinger systems: Integrability, inverse scattering and solitons. Nonlinearity 33(7), 3653 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Ablowitz, M.J., Been, J.B., Carr, L.D.: Integrable fractional modified Korteweg-deVries, sine-Gordon, and sinh-Gordon equations. J. Phys. A: Math. Theor. 55(38), 384010 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Alejo, M.A.: Focusing mKdV breather solutions with nonvanishing boundary condition by the inverse scattering method. J. Nonlinear Math. Phys. 19(1), 119–135 (2012)

    Article  MathSciNet  Google Scholar 

  • Au-Yeung, T.C., Fung, P.C.W.: Hamiltonian formulation of the inverse scattering method of the modified KdV equation under the non-vanishing boundary condition \(u\left(x, t\right)\rightarrow b\) as \(x \rightarrow \pm \infty\). J. Phys. A: Math. Gen. 21(18), 3575 (1988)

    Article  ADS  Google Scholar 

  • Au-Yeung, T.C., Fung, P.C.W., Au, C.: Modified KdV solitons with non-zero vacuum parameter obtainable from the ZS-AKNS inverse method. J. Phys. A: Math. Gen. 17(7), 1425 (1984)

    Article  ADS  Google Scholar 

  • Belov, A.A., Chaltikian, K.D.: Lattice analogues of W-algebras and classical integrable equations. Phys. Lett. B 309(3–4), 268–274 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • Bogoyavlensky, O.I.: Integrable discretizations of the KdV equation. Phys. Lett. A 134(1), 34–38 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • Chen, M.S., Fan, E.G.: Riemann-Hilbert approach for discrete sine-Gordon equation with simple and double poles. Stud. Appl. Math. 148(3), 1180–1207 (2022)

    Article  MathSciNet  Google Scholar 

  • Chen, X.J., Lam, W.K.: Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Phys. Rev. E 69(6), 066604 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Chen, J.B., Pelinovsky, D.E.: Periodic waves in the discrete mKdV equation: Modulational instability and rogue waves. Phys. D 445, 133652 (2023)

    Article  MathSciNet  Google Scholar 

  • Chen, M.S., Fan, E.G., He, J.S.: Riemann-Hilbert approach and the soliton solutions of the discrete mKdV equations. Chaos Soliton. Fract. 168, 113209 (2023)

    Article  MathSciNet  Google Scholar 

  • Demontis, F.: Exact solutions of the modified Korteweg-de Vries equation. Theor. Math. Phys. 168, 886–897 (2011)

    Article  MathSciNet  Google Scholar 

  • Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving Korteweg-de Vries equation. Phys. Rev. Lett. 19(19), 1095–1097 (1967)

    Article  ADS  Google Scholar 

  • Gkogkou, A., Prinari, B., Feng, B.F., Trubatch, A.D.: Inverse scattering transform for the complex coupled short-pulse equation. Stud. Appl. Math. 148(2), 918–963 (2022)

    Article  MathSciNet  Google Scholar 

  • Ji, J.L., Zhu, Z.N.: Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform. J. Math. Anal. Appl. 453(2), 973–984 (2017)

    Article  MathSciNet  Google Scholar 

  • Lin, Z., Wen, X.Y., Qin, M.L.: Various soliton solutions and asymptotic state analysis for the discrete modified Korteweg-de Vries equation. Adv. Math. Phys. 2021, 1–22 (2021)

    Article  MathSciNet  Google Scholar 

  • Li, Q., Duan, Q.Y., Zhang, J.B.: Soliton solutions of the mixed discrete modified Korteweg-de Vries hierarchy via the inverse scattering transform. Phys. Scr. 86(6), 065009 (2012)

    Article  ADS  Google Scholar 

  • Li, Q., Zhang, J.B., Chen, D.Y.: The eigenfunctions and exact solutions of discrete mKdV hierarchy with selfconsistent sources via the inverse scattering transform. Adv. Appl. Math. Mech. 7(5), 663–674 (2015)

    Article  MathSciNet  Google Scholar 

  • Ortiz, A.K., Prinari, B.: Inverse scattering transform for the defocusing Ablowitz-Ladik system with arbitrarily large nonzero background. Stud. Appl. Math. 143(4), 373–403 (2019)

    Article  MathSciNet  Google Scholar 

  • Ovsienko, V., Schwartz, R., Tabachnikov, S.: The pentagram map: a discrete integrable system. Commun. Math. Phys. 299(2), 409–446 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • Prinari, B.: Discrete solitons of the focusing Ablowitz-Ladik equation with nonzero boundary conditions via inverse scattering. J. Math. Phys. 57(8), 083510 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Prinari, B., Vitale, F.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with one-sided nonzero boundary condition. Cont. Math. 651, 157–194 (2015)

    Article  Google Scholar 

  • Prinari, B., Vitale, F.: Inverse scattering transform for the focusing Ablowitz-Ladik system with nonzero boundary conditions. Stud. Appl. Math. 137, 28–52 (2016)

    Article  MathSciNet  Google Scholar 

  • Shabat, A.B.: Inverse-scattering problem for a system of differential equations. Funct. Anal. Appl. 9(3), 244–247 (1975)

    Article  MathSciNet  Google Scholar 

  • Suris, Y.B.: On an integrable discretization of the modified Korteweg-de Vries equation. Phys. Lett. A 234(2), 91–102 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  • Villarroel, J., Ablowitz, M.J.: On the inverse scattering transform of the 2+1 Toda equation. Phys. D 65(1–2), 48–70 (1993)

    Article  MathSciNet  Google Scholar 

  • Wadati, M.: The modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 34(5), 1289–1296 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  • Wadati, M., Ohkuma, K.: Multiple-pole solutions of the modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 51(6), 2029–2035 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, G.X., Bo, H.: The discrete modified Korteweg-de Vries equation under nonzero boundary conditions. Appl. Math. Lett. 140, 108562 (2023)

    Article  MathSciNet  Google Scholar 

  • Zhang, Z.C., Fan, E.G.: Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions. Z. Angew. Math. Phys. 71(5), 149 (2020)

    Article  MathSciNet  Google Scholar 

  • Zhang, G.Q., Yan, Z.Y.: Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions. Phys. D 410, 132521 (2020)

    Article  MathSciNet  Google Scholar 

  • Zhang, G.Q., Yan, Z.Y.: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. Phys. D 402, 132170 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to each member of our discussion group for their suggestions. This work has been supported by the Fund Program for the Scientific Activities of Selected Returned Overseas Scholars in Shanxi Province under Grant No. 20220008, and the Shanxi Province Science Foundation under Grant No. 202303021221031.

Funding

This work has been supported by the Fund Program for the Scientific Activities of Selected Returned Overseas Scholars in Shanxi Province under Grant No. 20220008, and the Shanxi Province Science Foundation under Grant No. 202303021221031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Guo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, QL., Guo, R. Inverse scattering transform for a nonlinear lattice equation under non-vanishing boundary conditions. Opt Quant Electron 56, 1017 (2024). https://doi.org/10.1007/s11082-024-06886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06886-7

Keywords