Abstract
Terrestrial laser scanning technology is an advanced active remote sensing ranging method that is well suited for yielding high-resolution scans of the morphology of a tree, which is an indicator of the health of the plant. The Ganoderma boninense fungus causes basal stem rot (BSR), which threatens the oil palm industry in Malaysia. To date, the current practice of inspection in a plantation is conducted every 6 months. Monitoring the progress with a closer gap is required to comprehend if any changes can be seen earlier than 6 months. Therefore, the objectives of this study were to identify the most suitable parameters of the oil palm trees to detect the BSR disease based on temporal laser scanning data and to identify suitable time frames for monitoring the progress of the symptoms of the disease. Terrestrial laser scanning data was used to analyse changes in the crown and frond metrics of oil palm trees with two different scan durations i.e., 2- and 4-months after the first scan. This spatio-temporal data is important in the precision agriculture field for better oil palm management, to understand the disease development for long-term solutions and also to provide a fast response so that appropriate treatment can be given to the palm as early as possible. Statistical analyses, i.e., the Kruskal–Wallis test with α = 0.05 and the Wilcoxon post-hoc test, were conducted to determine significant differences in the parameters at different points in time. The results show that crown strata number 17 (850 cm from the top) and the crown area were the most suitable parameters to be used. Furthermore, the oil palm trees with BSR can be detected by comparing the 4-month scan or the second 2-month scan. The results have shown that the effect of Ganoderma boninense infection can be differentiated at the later stage. In conclusion, the changes can be measured at 4-months after the first inspection, thus helping to preventing crop losses.
Similar content being viewed by others
References
Abdullah, R., & Wahid, M. B. (2010). World palm oil supply, demand, price and prospects: Focus on Malaysian and Indonesian palm oil industry. Malaysian Palm Oil Board Press.
Ahmadi, P., Muharam, F. M., Ahmad, K., Mansor, S., & Abu Seman, I. (2017). Early detection of Ganoderma basal stem rot of oil palms using artificial neural network spectral analysis. Plant Disease, 101(6), 1009–1016.
Ahongshangbam, J., Khokthong, W., Ellsässer, F., Hendrayanto, H., Hölscher, D., & Röll, A. (2019). Drone-based photogrammetry-derived crown metrics for predicting tree and oil palm water use. Ecohydrology. https://doi.org/10.1002/eco.2115
Ariffin, D., & Seman, I. A. (1991). A selective medium for the isolation of ganoderma from diseased tissues. Palm Oil Research Institute of Malaysia.
Assis, K., Chong, K. P., Idris, A. S., & Ho, C. M. (2016). Economic loss due to Ganoderma disease in oil palm. World Academy of Science, Engineering and Technology, International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 10(2), 631–635. https://doi.org/10.5281/zenodo.1111999
Avtar, R., Suab, S. A., Syukur, M. S., Korom, A., Umarhadi, D. A., & Yunus, A. P. (2020). Assessing the influence of UAV altitude on extracted biophysical parameters of young oil palm. Remote Sensing, 12(18), 3030. https://doi.org/10.3390/rs12183030
Ayrey, E., Fraver, S., Kershaw, J. A., Jr., Kenefic, L. S., Hayes, D., Weiskittel, A. R., & Roth, B. E. (2017). Layer stacking: A novel algorithm for individual forest tree segmentation from LiDAR point clouds. Canadian Journal of Remote Sensing, 43(1), 16–27. https://doi.org/10.1080/07038992.2017.1252907
Azahar, T. M., Mustapha, J. C., Mazliham, S., & Boursier, P. (2011). Temporal analysis of basal stem rot disease in oil palm plantations: An analysis on peat soil. International Journal of Engineering & Technology, 11(3), 96–101.
Azmi, A. N. N., Bejo, S. K., Jahari, M., Muharam, F. M., Yule, I., & Husin, N. A. (2020). Early detection of Ganoderma boninense in oil palm seedlings using support vector machines. Remote Sensing, 12(23), 3920. https://doi.org/10.3390/rs12233920
Azuan, N. H., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S. M., & Ahmad, D. (2019). Analysis of changes in oil palm canopy architecture from basal stem rot using terrestrial laser scanner. Plant Disease, 103(12), 3218–3225. https://doi.org/10.1094/PDIS-10-18-1721-RE
Bejo, S., Abdol-Lajis, G., Abd-Aziz, S., Abu-Seman, I. & Ahamed, T. (2018). Detecting Basal Stem Rot (BSR) disease at oil palm tree using thermal imaging technique. In Proceedings of the 14th International Conference on Precision Agriculture.
Bienert, A., Maas, H. G., & Scheller, S. (2006). Analysis of the information content of terrestrial laser scanner point clouds for the automatic determination of forest inventory parameters. Workshop on 3D Remote Sensing in Forestry., 14(15), 1–7.
Burkhart, H. E., Avery, T. E., & Bullock, B. P. (2018). Forest measurements. Waveland Press.
Calders, K., Schenkels, T., Bartholomeus, H., Armston, J., Verbesselt, J., & Herold, M. (2015). Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurements. Agricultural and Forest Meteorology, 203, 158–168.
Cardozo, F. A. R. (2011). Terrestrial laser scanning measurements to characterise temporal changes in forest canopies. Doctoral dissertation, University of Salford
Chemura, A., van Duren, I., & van Leeuwen, L. M. (2015). Determination of the age of oil palm from crown projection area detected from WorldView-2 multispectral remote sensing data: The case of Ejisu-Juaben district, Ghana. ISPRS Journal of Photogrammetry and Remote Sensing, 100, 118–127. https://doi.org/10.1016/j.isprsjprs.2014.07.013
Chen, J. M., & Leblanc, S. G. (1997). A four-scale bidirectional reflectance model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1316–1337. https://doi.org/10.1109/36.628798
Chen, Z. Y., Goh, Y. K., Goh, Y. K., & Goh, K. J. (2017). Life expectancy of oil palm (Elaeis guineensis) infected by Ganoderma boninense in coastal soils, Malaysia: A case study. Archives of Phytopathology and Plant Protection, 50(11–12), 598–612. https://doi.org/10.1080/03235408.2017.1352249
Chow, J., Lichti, D., & Teskey, W. (2012). Accuracy assessment of the Faro Focus3D and Leica HDS6100 panoramic type terrestrial laser scanner through point-based and plane-based user self-calibration. Proceedings of the FIG Working Week: Knowing to Manage the Territory, Protect the Environment, Evaluate the Cultural Heritage, Rome, Italy, 610.
Corley, R. H. V., & Tinker, P. B. (2008). The oil palm (4th ed.). Blackwell Science.
FARO. (2016). SCENE 6.2 User Manual, FARO Technologies Inc., September 2016.
Henning, J. G., & Radtke, P. J. (2006). Ground-based laser imaging for assessing three-dimensional forest canopy structure. Photogramm. Eng. Remote Sens., 72(12), 1349–1358. https://doi.org/10.14358/PERS.72.12.1349
Hoffmeister, D., Waldhoff, G., Korres, W., Curdt, C., & Bareth, G. (2016). Crop height variability detection in a single field by multi-temporal terrestrial laser scanning. Precision Agriculture, 17(3), 296–312. https://doi.org/10.1007/s11119-015-9420-y
Honda, H., Hatta, H., & Fisher, J. B. (1997). Branch geometry in Cornus kousa (Cornaceae): Computer simulations. American Journal of Botany, 84(6), 745–755. https://doi.org/10.2307/2445810
Husin, N. A., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S. M., & Ahmad, D. (2020a). Study of the oil palm crown characteristics associated with Basal Stem Rot (BSR) disease using stratification method of point cloud data. Computers and Electronics in Agriculture, 178, 105810. https://doi.org/10.1016/j.compag.2020.105810
Husin, N. A., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S., Ahmad, D., & Aziz, M. H. (2020b). Classification of basal stem rot disease in oil palm plantations using terrestrial laser scanning data and machine learning. Agronomy, 10(11), 1624. https://doi.org/10.3390/agronomy10111624
Husin, N. A., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S., Ahmad, D., & Azmi, A. N. (2020c). Application of ground-based LiDAR for analysing oil palm canopy properties on the occurrence of Basal Stem Rot (BSR) Disease. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-020-62275-6
Idris, A. S., Ismail, S., & Arrifin, D. (2005). Reducing risk of Ganoderma in supply palms. MPOB TT Information Series, 260.
Idris, A. S., & Rafidah, R. (2008). Enzyme linked immunosorbent assay-polyclonal antibody (ELISA-PAb). MPOB Information Series, 430, 1–4.
Inocencio, L. C., Veronez, M. R., Wohnrath Tognoli, F. M., de Souza, M. K., da Silva, R. M., & Blum Silveira, C. L. (2014). Spectral pattern classification in lidar data for rock identification in outcrops. The Scientific World Journal. https://doi.org/10.1155/2014/539029
Izzuddin, M. A., Idris, A. S., Wahid, O., Nishfariza, M. N., & Shafri, H. Z. M. (2013). Field spectroscopy for detection of Ganoderma disease in oil palm. MPOB Information Series, 532, 4.
Kalliovirta, J., & Tokola, T. (2005). Functisons for estimating stem diameter and tree age using tree height, crown width and existing stand database information. Silva Fennica, 39(2), 227–248. https://doi.org/10.14214/sf.386
Kamu, A., Mun, H. C., Phin, C. K., & Seman, I. A. (2018). Identifying the early visible symptoms of the Ganoderma-infected oil palms: A case study on the infected palms which collapsed within twelve months after disease census. ASM Science Journal, 11(2), 156–163.
Kandan, A., Bhaskaran, R., & Samiyappan, R. (2010). Ganoderma: A basal stem rot disease of coconut palm in south Asia and Asia pacific regions. Archives of Phytopathology and Plant Protection, 43(15), 1445–1449. https://doi.org/10.1080/03235400802536527
Kannan, P., Peng, T. S., Ahmad, S. M., Seman, I. A., Rahman, A. K., Hashim, K., et al. (2017). Knowledge assessment of basal stem rot disease of oil palm and its control practices among recipients of replanting assistance scheme in Malaysia. International Journal of Agricultural Research, 12, 73–81.
Khairunniza-Bejo, S., & Vong, C. N. (2014). Detection of basal stem rot (BSR) infected oil palm tree using laser scanning data. Agriculture and Agricultural Science Procedia, 2, 156–164. https://doi.org/10.1016/j.aaspro.2014.11.023
Khairunniza-Bejo, S., Yusoff, Y., Yusoff, N. S. N., Seman, I. A., & Anuar, M. I. (2015). Identification of healthy and BSR-infected oil palm trees using color indices. International Journal of Agricultural and Biosystem Engineering, 9, 785–788.
King, D. A. (1998). Relationship between crown architecture and branch orientation in rain forest trees. Annals of Botany, 82(1), 1–7. https://doi.org/10.1006/anbo.1998.0638
Kong, F., Yan, W., Zheng, G., Yin, H., Cavan, G., Zhan, W., Zhang, N., & Cheng, L. (2016). Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agricultural and Forest Meteorology, 217, 22–34. https://doi.org/10.1016/j.agrformet.2015.11.005
Korom, A., Phua, M. H., Hirata, Y., & Matsuura, T. (2014). Extracting oil palm crown from WorldView-2 satellite image. IOP Conference Series: Earth and Environmental Science, 18(1), 012188. https://doi.org/10.1088/1755-1315/18/1/012188
Laila, N., Chai-Ling, H., Soon, G. T., Umi Kalsom, Y., & Faridah, A. (2011). Cloning of transcripts encoding chitinases from Elaeis guineensis Jacq. and their expression profiles in response to fungal infections. Physiological and Molecular Plant Pathology, 76, 96–103. https://doi.org/10.1016/j.pmpp.2011.06.006
Lelong, C. C., Roger, J. M., Brégand, S., Dubertret, F., Lanore, M., Sitorus, N. A., et al. (2010). Evaluation of oil-palm fungal disease infestation with canopy hyperspectral reflectance data. Sensors, 10(1), 734–747. https://doi.org/10.3390/s100100734
Li, Y., Su, Y., Zhao, X., Yang, M., Hu, T., Zhang, J., et al. (2020). Retrieval of tree branch architecture attributes from terrestrial laser scan data using a Laplacian algorithm. Agricultural and Forest Meteorology, 284, 107874. https://doi.org/10.1016/j.agrformet.2019.107874
Liaghat, S., Ehsani, R., Mansor, S., Shafri, H. Z., Meon, S., Sankaran, S., & Azam, S. H. (2014). Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. International Journal of Remote Sensing, 35(10), 3427–3439. https://doi.org/10.1080/01431161.2014.903353
Liang, X., Hyyppä, J., Kaartinen, H., Holopainen, M., & Melkas, T. (2012). Detecting changes in forest structure over time with bi-temporal terrestrial laser scanning data. ISPRS International Journal of Geo-Information, 1(3), 242–255. https://doi.org/10.3390/ijgi1030242
Lovell, J. L., Jupp, D. L. B., Newnham, G. J., & Culvenor, D. S. (2011). Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 46–55. https://doi.org/10.1016/j.isprsjprs.2010.08.006
Lubis, A. U. (1992). Oil palm (Elaeis guineensis Jacq.) in Indonesia. Bandar Kuala (ID): Oil Palm Research Center.
Madden, L. V., & Hughes, G. (1995). Plant disease incidence: Distributions, heterogeneity, and temporal analysis. Annual Review of Phytopathology, 33(1), 529–564. https://doi.org/10.1146/annurev.py.33.090195.002525
Madihah, A. Z., Idris, A. S., & Rafidah, A. R. (2014). Polyclonal antibodies of Ganoderma boninense isolated from Malaysian oil palm for detection of basal stem rot disease. African Journal of Biotechnology, 13(34), 3455–3463. https://doi.org/10.5897/AJB2013.13604
Malhi, Y., Jackson, T., Patrick Bentley, L., Lau, A., Shenkin, A., Herold, M., et al. (2018). New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus, 8(2), 20170052. https://doi.org/10.1098/rsfs.2017.0052
Medić, T., Kuhlmann, H., & Holst, C. (2019). Sensitivity analysis and minimal measurement geometry for the target-based calibration of high-end panoramic terrestrial laser scanners. Remote Sensing, 11(13), 1519. https://doi.org/10.3390/rs11131519
MPOB. (2017). Pocketbook of palm oil uses (7th ed.). MPOB.
Oil World. (2017). Oil World weekly. ISTA Mielke Gmbh. https://www.oilworld.biz/t/publications/weekly.
Paterson, R. R. M. (2007). Ganoderma disease of oil palm—A white rot perspective necessary for integrated control. Crop Protection, 26(9), 1369–1376. https://doi.org/10.1016/j.cropro.2006.11.009
Peper, P. J., McPherson, E. G., & Mori, S. M. (2001). Functions for predicting diameter, height, crown width, and leaf area of San Joaquin Valley street trees. Journal of Arboriculture, 26(6), 306–317.
Popescu, S. C., & Zhao, K. (2008). A voxel-based lidar method for estimating crown base height for deciduous and pine trees. Remote Sensing of Environment, 112(3), 767–781. https://doi.org/10.1016/j.rse.2007.06.011
Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., et al. (2013). Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing, 5(2), 491–520.
Rees, R. W., Flood, J., Hasan, Y., & Cooper, R. M. (2007). Effects of inoculum potential, shading and soil temperature on root infection of oil palm seedlings by the basal stem rot pathogen Ganoderma boninense. Plant Pathology, 56(5), 862–870. https://doi.org/10.1111/j.1365-3059.2007.01621.x
Santoso, H., Gunawan, T., Jatmiko, R. H., Darmosarkoro, W., & Minasny, B. (2011). Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery. Precision Agriculture, 12(2), 233–248. https://doi.org/10.1007/s11119-010-9172-7
Schneider, F. D., Kükenbrink, D., Schaepman, M. E., Schimel, D. S., & Morsdorf, F. (2019). Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR. Agricultural and Forest Meteorology, 268, 249–257. https://doi.org/10.1016/j.agrformet.2019.01.033
Shafri, H. Z., Anuar, M. I., Seman, I. A., & Noor, N. M. (2011). Spectral discrimination of healthy and Ganoderma-infected oil palms from hyperspectral data. International Journal of Remote Sensing., 32(22), 7111–7129. https://doi.org/10.1080/01431161.2010.519003
Shevade, V. S., & Loboda, T. V. (2019). Oil palm plantations in Peninsular Malaysia: Determinants and constraints on expansion. PLoS ONE, 14(2), e0210628. https://doi.org/10.1371/journal.pone.0210628
Shigo, A. L. (1985). Compartmentalization of decay in trees. Scientific American, 252(4), 96–105.
Sime Darby (2009). Palm Oil Industry in Malaysia: Skills and Knowledge for Sustained Development in Africa .http://siteresources.worldbank.org/EDUCATION/Resources/278200-1121703274255/1439264-1242337549970/Malaysian_Palm_Oil_Industry.pdf
Soepena, H., Purba, R. Y., & Pawirosukarto, S. (2000). A Control Strategy for Basal 6. Ganoderma Diseases of Perennial Crops, 83.
Srinivasan, S., Popescu, S. C., Eriksson, M., Sheridan, R. D., & Ku, N. W. (2015). Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote Sensing, 7(2), 1877–1896. https://doi.org/10.1016/j.foreco.2014.01.038
Tang, S., Dong, P., & Buckles, B. P. (2013). Three-dimensional surface reconstruction of tree canopy from lidar point clouds using a region-based level set method. International Journal of Remote Sensing, 34(4), 1373–1385. https://doi.org/10.1080/01431161.2012.720046
Tilly, N., Hoffmeister, D., Cao, Q., Huang, S., Lenz-Wiedemann, V., Miao, Y., & Bareth, G. (2014). Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. Journal of Applied Remote Sensing, 8(1), 083671. https://doi.org/10.1117/1.JRS.8.083671
Trochta, J., Krůček, M., Vrška, T., & Král, K. (2017). 3D forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR. PLoS ONE, 12(5), e0176871. https://doi.org/10.1080/01431161.2012.720046
USDA. (2019). United States Department of Agriculture, Foreign Agricultural Service. Oilseeds: World markets and Trade. https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf
Wilkes, P., Lau, A., Disney, M., Calders, K., Burt, A., de Tanago, J. G., et al. (2017). Data acquisition considerations for terrestrial laser scanning of forest plots. Remote Sensing of Environment, 196, 140–153. https://doi.org/10.1016/j.rse.2017.04.030
Wu, D., Phinn, S., Johansen, K., Robson, A., Muir, J., & Searle, C. (2018). Estimating changes in leaf area, leaf area density, and vertical leaf area profile for mango, avocado, and macadamia tree crowns using terrestrial laser scanning. Remote Sensing, 10(11), 1750.
Xu, Y., Yu, L., Li, W., Ciais, P., Cheng, Y., & Gong, P. (2020). Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016. Earth System Science Data, 12(2), 847–867. https://doi.org/10.5194/essd-12-847-2020
Yang, B., Dai, W., Dong, Z., & Liu, Y. (2016). Automatic forest mapping at individual tree levels from terrestrial laser scanning point clouds with a hierarchical minimum cut method. Remote Sensing, 8(5), 372. https://doi.org/10.3390/rs8050372
Zulkifli, Z., & Bejo, S. K. (2015). Paddy growth monitoring using terrestrial laser scanner. Australian Journal of Basic and Applied Sciences, 9(28), 90–96.
Funding
The authors would like to acknowledge the Ministry of Higher Education Malaysia and University Putra Malaysia for sponsoring this research under research number LRGS-NANOMITE/ 5526305.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Husin, N.A., Khairunniza-Bejo, S., Abdullah, A.F. et al. Multi-temporal analysis of terrestrial laser scanning data to detect basal stem rot in oil palm trees. Precision Agric 23, 101–126 (2022). https://doi.org/10.1007/s11119-021-09829-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11119-021-09829-4