Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Semi-quantum secure direct communication against collective-dephasing noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The idea of semi-quantum has been widely used in recent years in the design of quantum cryptographic schemes. It allows certain participants in quantum protocols to remain classical and execute quantum information processing tasks by using as few quantum resources as possible. In this paper, we propose a fault-tolerant semi-quantum secure direct communication (SQSDC) scheme to resist collective-dephasing noise in quantum channels. In the proposed scheme, the message sender uses logical qubits to transfer the message to the classical message receiver, who can either measure under the Z-basis or reflect the qubits he received undisturbed. In addition, according to the security analysis and discussions, the proposed scheme is robust and fault-tolerant against collective-dephasing noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  ADS  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In Proceedings of the international conference on computers, systems and signal processing, (1984)

  3. Iqbal, H., Krawec, W.O.: Semi-quantum cryptography. Quantum Inf. Process. 19(3), 1–52 (2020)

    Article  MathSciNet  Google Scholar 

  4. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79, 052312 (2009)

    Article  ADS  Google Scholar 

  7. Boyer, M., Mor, T.: Comment on semiquantum-key distribution using less than four quantum states. Phys. Rev. A 83, 046301 (2011)

    Article  ADS  Google Scholar 

  8. Yu, K., Yang, C., Liao, C., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Li, C., Yu, K., Kao, S., Hwang, T.: Authenticated semi-quantum key distributions without classical channel. Quantum Inf. Process. 15(7), 2881–2893 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Zhang, M., Li, H., Peng, J., Feng, X.: Fault-tolerant semiquantum key distribution over a collective-dephasing noise channel. Int. J. Theor. Phys. 56(8), 2659–2670 (2017)

    Article  MATH  Google Scholar 

  11. Amer, O., Krawec, W.O.: Semiquantum key distribution with high quantum noise tolerance. Phys. Rev. A 100, 022319 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zebboudj, S., Djoudi, H., Lalaoui, D., Omar, M.: Authenticated semi-quantum key distribution without entanglement. Quantum Inf. Process. 19(3), 1–19 (2020)

    Article  MathSciNet  Google Scholar 

  13. Chang, C., Lu, Y., Hwang, T.: Measure-resend authenticated semi-quantum key distribution with single photons. Quantum Inf. Process. 20(8), 1–12 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zou, X., Qiu, D.: Three-step semiquantum secure direct communication protocol. Sci. China: Phys., Mech. Astron 57(9), 1696–1702 (2014)

    ADS  Google Scholar 

  15. Gu, J., Lin, P., Hwang, T.: Double c-not attack and counterattack on ‘three-step semi-quantum secure direct communication protocol. Quantum Inf. Process. 17(7), 1–8 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Luo, Y., Hwang, T.: Authenticated semi-quantum direct communication protocols using bell states. Quantum Inf. Process. 15(2), 947–958 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Zhang, M., Li, H., Xia, Z., Feng, X., Peng, J.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 1–14 (2017)

    Article  ADS  MATH  Google Scholar 

  18. Yan, L., Sun, Y., Chang, Y., Zhang, S., Wan, G., Sheng, Z.: Semi-quantum protocol for deterministic secure quantum communication using bell states. Quantum Inf. Process. 17(11), 1–12 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Xie, C., Li, L., Situ, H., He, J.: Semi-quantum secure direct communication scheme based on bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, C., Tsai, C.: Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 19(4), 1–13 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rong, Z., Qiu, D., Mateus, P., Zou, X.: Mediated semi-quantum secure direct communication. Quantum Inf. Process. 20(2), 1–13 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  22. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 1–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  24. Bennett, C.H., Brassard, G., Popescu, S., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  25. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Rep. Prog. Phys. 76(7), 076001 (2013)

    Article  ADS  Google Scholar 

  27. Wang, X.B.: Quantum error-rejection code with spontaneous parametric down-conversion. Phys. Rev. A 69, 022320 (2004)

    Article  ADS  Google Scholar 

  28. Chen, Y.A., Zhang, A.N., Zhao, Z., et al.: Experimental quantum error rejection for quantum communication. Phys. Rev. Lett. 96, 220504 (2006)

    Article  ADS  Google Scholar 

  29. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    Article  ADS  Google Scholar 

  30. Palma, G.M., Suominen, K.A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. A 452, 567–584 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Lamport, L.: Password authentication with insecure communication. Commun. ACM 24(11), 770–772 (1981)

    Article  Google Scholar 

  32. Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16(2), 49 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. He, Y., Ma, W.: Multiparty quantum secure direct communication immune to collective noise. Quantum Inf. Process. 18(1), 4 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  35. Deng, F., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61872245), Shenzhen Science and Technology Program (JCYJ20210324100813034, JCYJ20190809152003992, JCYJ20180305123639326), Shenzhen Polytechnic Research Foundation (6022310031K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Chen, X. & Sun, Z. Semi-quantum secure direct communication against collective-dephasing noise. Quantum Inf Process 21, 352 (2022). https://doi.org/10.1007/s11128-022-03702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03702-7

Keywords