Abstract
The idea of semi-quantum has been widely used in recent years in the design of quantum cryptographic schemes. It allows certain participants in quantum protocols to remain classical and execute quantum information processing tasks by using as few quantum resources as possible. In this paper, we propose a fault-tolerant semi-quantum secure direct communication (SQSDC) scheme to resist collective-dephasing noise in quantum channels. In the proposed scheme, the message sender uses logical qubits to transfer the message to the classical message receiver, who can either measure under the Z-basis or reflect the qubits he received undisturbed. In addition, according to the security analysis and discussions, the proposed scheme is robust and fault-tolerant against collective-dephasing noise.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In Proceedings of the international conference on computers, systems and signal processing, (1984)
Iqbal, H., Krawec, W.O.: Semi-quantum cryptography. Quantum Inf. Process. 19(3), 1–52 (2020)
Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99, 140501 (2007)
Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79, 032341 (2009)
Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79, 052312 (2009)
Boyer, M., Mor, T.: Comment on semiquantum-key distribution using less than four quantum states. Phys. Rev. A 83, 046301 (2011)
Yu, K., Yang, C., Liao, C., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)
Li, C., Yu, K., Kao, S., Hwang, T.: Authenticated semi-quantum key distributions without classical channel. Quantum Inf. Process. 15(7), 2881–2893 (2016)
Zhang, M., Li, H., Peng, J., Feng, X.: Fault-tolerant semiquantum key distribution over a collective-dephasing noise channel. Int. J. Theor. Phys. 56(8), 2659–2670 (2017)
Amer, O., Krawec, W.O.: Semiquantum key distribution with high quantum noise tolerance. Phys. Rev. A 100, 022319 (2019)
Zebboudj, S., Djoudi, H., Lalaoui, D., Omar, M.: Authenticated semi-quantum key distribution without entanglement. Quantum Inf. Process. 19(3), 1–19 (2020)
Chang, C., Lu, Y., Hwang, T.: Measure-resend authenticated semi-quantum key distribution with single photons. Quantum Inf. Process. 20(8), 1–12 (2021)
Zou, X., Qiu, D.: Three-step semiquantum secure direct communication protocol. Sci. China: Phys., Mech. Astron 57(9), 1696–1702 (2014)
Gu, J., Lin, P., Hwang, T.: Double c-not attack and counterattack on ‘three-step semi-quantum secure direct communication protocol. Quantum Inf. Process. 17(7), 1–8 (2018)
Luo, Y., Hwang, T.: Authenticated semi-quantum direct communication protocols using bell states. Quantum Inf. Process. 15(2), 947–958 (2016)
Zhang, M., Li, H., Xia, Z., Feng, X., Peng, J.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 1–14 (2017)
Yan, L., Sun, Y., Chang, Y., Zhang, S., Wan, G., Sheng, Z.: Semi-quantum protocol for deterministic secure quantum communication using bell states. Quantum Inf. Process. 17(11), 1–12 (2018)
Xie, C., Li, L., Situ, H., He, J.: Semi-quantum secure direct communication scheme based on bell states. Int. J. Theor. Phys. 57(6), 1881–1887 (2018)
Yang, C., Tsai, C.: Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 19(4), 1–13 (2020)
Rong, Z., Qiu, D., Mateus, P., Zou, X.: Mediated semi-quantum secure direct communication. Quantum Inf. Process. 20(2), 1–13 (2021)
Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 1–19 (2017)
Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)
Bennett, C.H., Brassard, G., Popescu, S., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)
Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Rep. Prog. Phys. 76(7), 076001 (2013)
Wang, X.B.: Quantum error-rejection code with spontaneous parametric down-conversion. Phys. Rev. A 69, 022320 (2004)
Chen, Y.A., Zhang, A.N., Zhao, Z., et al.: Experimental quantum error rejection for quantum communication. Phys. Rev. Lett. 96, 220504 (2006)
Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., et al.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)
Palma, G.M., Suominen, K.A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. A 452, 567–584 (1996)
Lamport, L.: Password authentication with insecure communication. Commun. ACM 24(11), 770–772 (1981)
Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16(2), 49 (2017)
He, Y., Ma, W.: Multiparty quantum secure direct communication immune to collective noise. Quantum Inf. Process. 18(1), 4 (2019)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Deng, F., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (61872245), Shenzhen Science and Technology Program (JCYJ20210324100813034, JCYJ20190809152003992, JCYJ20180305123639326), Shenzhen Polytechnic Research Foundation (6022310031K).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, P., Chen, X. & Sun, Z. Semi-quantum secure direct communication against collective-dephasing noise. Quantum Inf Process 21, 352 (2022). https://doi.org/10.1007/s11128-022-03702-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03702-7