Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A three-layer quantum multi-image encryption scheme

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a new quantum representation for multiple images (QRMI) is presented, which can save more storage space than the existing representations. Moreover, to improve efficiency and security, a three-layer quantum multi-image encryption scheme is proposed based on QRMI. First, in the position-layer scrambling phase, the 3D non-equilateral Arnold transform is used to scramble the pixel position and sequence number of images, which is equivalent to achieving the 3D pixel position scrambling at one time. Then, in the bit-layer permutation phase, a bit-plane permutation operation is conducted to exchange the bit-plane order. Finally, in the pixel-layer diffusion phase, 3D hyper-chaotic Henon is used to generate three key sequences, and the bit-layer permutated image is XORed with the quantum key image originating from those key sequences to obtain the ciphertext image. The corresponding quantum realization circuits are given, and simulation results show that the proposed quantum multi-image encryption scheme is effective and secure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The manuscript has no relevant data.

References

  1. Ahmad, J., Khan, M.A., Ahmed, F., Khan, J.S.: A novel image encryption scheme based on orthogonal matrix, skew tent map, and XOR operation. Neural Comput. Appl. 30(12), 3847–3857 (2018)

    Google Scholar 

  2. Kaur, M., Kumar, V.: A comprehensive review on image encryption techniques. Arch. Comput. Methods Eng. 27, 15–43 (2020)

    MathSciNet  Google Scholar 

  3. Man, Z., Li, J., Di, X., Sheng, Y., Liu, Z.: Double image encryption algorithm based on neural network and chaos. Chaos Ssolitons Fractals 152, 111318 (2021)

    MathSciNet  Google Scholar 

  4. Lai, Q., Hu, G., Erkan, U., Toktas, A.: A novel pixel-split image encryption scheme based on 2D salomon map. Expert Syst. Appl. 213, 118845 (2023)

    Google Scholar 

  5. Gustafson, E., Zhu, Y., Dreher, P., Linke, N.M., Meurice, Y.: Real-time quantum calculations of phase shifts using wave packet time delays. Phys. Rev. D 104, 054507 (2021)

    ADS  MathSciNet  Google Scholar 

  6. Genoni, M.G., Olivares, S., Paris, M.G.: Optical phase estimation in the presence of phase diffusion. Phys. Rev. Lett. 106(15), 153603 (2011)

    ADS  Google Scholar 

  7. Teklu, B., Olivares, S., Paris, M.G.: Bayesian estimation of one-parameter qubit gates. J. Phys. B At. Mol. Opt. Phys. 42(3), 035502 (2009)

    ADS  Google Scholar 

  8. Brivio, D., Cialdi, S., Vezzoli, S., Gebrehiwot, B.T., Genoni, M.G., Olivares, S., Paris, M.G.: Experimental estimation of one-parameter qubit gates in the presence of phase diffusion. Phys. Rev. A 81(1), 012305 (2010)

    ADS  Google Scholar 

  9. Teklu, B., Genoni, M.G., Olivares, S., Paris, M.G.: Phase estimation in the presence of phase diffusion: the qubit case. Phys. Scr. 2010(T140), 014062 (2010)

    Google Scholar 

  10. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L., Razavi, M., Shaari, J.S., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.: Advances in quantum cryptography. Adv. Opt. Photon. 12(4), 1012–1236 (2020)

    Google Scholar 

  11. Luo, W., Cao, L., Shi, Y., Wan, L., Zhang, H., Li, S., Chen, G., Li, Y., Sijin, L., Wang, Y., Sun, S., Karim, M.F., Cai, H., Kwek, L.C., Liu, A.Q.: Recent progress in quantum photonic chips for quantum communication and internet. Light Sci. Appl. 12(1), 175 (2023)

    ADS  Google Scholar 

  12. Chen, Z., Wang, X., Yu, S., Li, Z., Guo, H.: Continuous-mode quantum key distribution with digital signal processing. npj Quantum Inf. 9(1), 28 (2023)

    ADS  Google Scholar 

  13. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Du šek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301–1350 (2009)

    ADS  Google Scholar 

  14. Portmann, C., Renner, R.: Security in quantum cryptography. Rev. Mod. Phys. 94(2), 025008 (2022)

    ADS  MathSciNet  Google Scholar 

  15. Jiang, N., Dong, X., Hu, H., Ji, Z., Zhang, W.: Quantum image encryption based on Henon mapping. Int. J. Theor. Phys. 58(3), 979–991 (2019)

    MathSciNet  Google Scholar 

  16. Liu, X., Xiao, D., Huang, W., Liu, C.: Quantum block image encryption based on Arnold transform and sine Chaotification model. IEEE Access 7, 57188–57199 (2019)

    Google Scholar 

  17. Wang, L., Ran, Q., Ding, J.: Quantum color image encryption scheme based on 3D non-equilateral Arnold transform and 3D logistic chaotic map. Int. J. Theor. Phys. 62(2), 36 (2023)

    MathSciNet  Google Scholar 

  18. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    MathSciNet  Google Scholar 

  19. Zhang, Y., Lu, K., Gao, Y., Wang, M.: Neqr: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    ADS  MathSciNet  Google Scholar 

  20. Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform 17(3), 404 (2013)

    Google Scholar 

  21. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12, 3103–3126 (2013)

    ADS  MathSciNet  Google Scholar 

  22. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 1–14 (2017)

    ADS  MathSciNet  Google Scholar 

  23. Liu, K., Zhang, Y., Lu, K., Wang, X., Wang, X.: An optimized quantum representation for color digital images. Int. J. Theor. Phys. 57(10), 2938–2948 (2018)

    Google Scholar 

  24. Wang, L., Ran, Q., Ma, J., Yu, S., Tan, L.: QRCI: a new quantum representation model of color digital images. Optics Commun. 438, 147–158 (2019)

    ADS  Google Scholar 

  25. Li, H.S., Chen, X., Xia, H., Liang, Y., Zhou, Z.: A quantum image representation based on bitplanes. IEEE access 6, 62396–62404 (2018)

    Google Scholar 

  26. Chen, X., Liu, Z., Chen, H., Xu, C.: QIPC: A novel quantum representation model for polar coordinate images. Quantum Inf. Process. 21(5), 174 (2022)

    ADS  MathSciNet  Google Scholar 

  27. Zhou, N., Yan, X., Liang, H., Tao, X., Li, G.: Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system. Quantum Inf. Process. 17(12), 1–36 (2018)

    ADS  Google Scholar 

  28. Wang, L., Ran, Q., Ma, J.: Double quantum color images encryption scheme based on DQRCI. Multimedia Tools Appl. 79(9), 6661–6687 (2020)

    Google Scholar 

  29. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(03), 1730001 (2017)

    MathSciNet  Google Scholar 

  30. Liang, H.R., Tao, X.Y., Zhou, N.R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15(7), 2701–2724 (2016)

    ADS  MathSciNet  Google Scholar 

  31. Gong, L.H., He, X.T., Cheng, S., Hua, T.X., Zhou, N.R.: Quantum image encryption algorithm based on quantum image XOR operations. Int. J. Theor. Phys. 55(7), 3234–3250 (2016)

    MathSciNet  Google Scholar 

  32. Zhou, N., Hu, Y., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16(6), 1–23 (2017)

    ADS  MathSciNet  Google Scholar 

  33. Wang, J., Geng, Y.C., Han, L., Liu, J.Q.: Quantum image encryption algorithm based on quantum key image. Int. J. Theor. Phys. 58(1), 308–322 (2019)

    Google Scholar 

  34. Song, X., Chen, G., Abd El-Latif, A.A.: Quantum color image encryption scheme based on geometric transformation and intensity channel diffusion. Mathematics 10(17), 3038 (2022)

    Google Scholar 

  35. Liu, X., Liu, C.: Quantum image encryption scheme using independent bit-plane permutation and baker map. Quantum Inf. Process. 22(6), 262 (2023)

    ADS  MathSciNet  Google Scholar 

  36. Jiang, Z., Liu, X.: Image encryption algorithm based on discrete quantum baker map and chen hyperchaotic system. Int. J. Theor. Phys. 62(2), 22 (2023)

    MathSciNet  Google Scholar 

  37. Wang, S., Song, X., Niu, X.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. In: Intelligent Data Analysis and its Applications, vol. II, pp. 243–250. Springer, Cham (2014)

    Google Scholar 

  38. Hu, W.W., Zhou, R.G., Luo, J., Jiang, S.X., Luo, G.F.: Quantum image encryption algorithm based on Arnold scrambling and wavelet transforms. Quantum Inf. Process. 19, 1–29 (2020)

    ADS  MathSciNet  Google Scholar 

  39. Gong, L.H., He, X.T., Tan, R.C., Zhou, Z.H.: Single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform. Int. J. Theor. Phys. 57(1), 59–73 (2018)

    Google Scholar 

  40. Li, X.Z., Chen, W.W., Wang, Y.Q.: Quantum image compression-encryption scheme based on quantum discrete cosine transform. Int. J. Theor. Phys. 57(9), 2904–2919 (2018)

    Google Scholar 

  41. Li, Y.K., Feng, Q.S., Zhou, F., Li, Q.: 2-D arnold transformation and non-equilateral image scrambling transformation. Comput. Eng. Design 30(13) (2009)

  42. Ma, Y., Zhou, N.R.: Quantum color image compression and encryption algorithm based on Fibonacci transform. Quantum Inf. Process. 22(1), 39 (2023)

    ADS  MathSciNet  Google Scholar 

  43. Li, H.S., Fan, P., Xia, H., Peng, H., Long, G.L.: Efficient quantum arithmetic operation circuits for quantum image processing. Sci. China Phys. Mech. Astron. 63(8), 1–13 (2020)

    Google Scholar 

  44. Anandkumar, R., Kalpana, R.: Designing a fast image encryption scheme using fractal function and 3D Henon map. J. Inf. Secur. Appl. 49, 102390 (2019)

    Google Scholar 

  45. Khorrampanah, M., Houshmand, M., Lotfi Heravi, M.M.: New method to encrypt RGB images using quantum computing. Opt. Quant. Electron. 54(4), 1–16 (2022)

    Google Scholar 

  46. Ran, Q., Wang, L., Ma, J., Tan, L., Yu, S.: A quantum color image encryption scheme based on coupled hyper-chaotic Lorenz system with three impulse injections. Quantum Inf. Process. 17(8), 1–30 (2018)

    ADS  MathSciNet  Google Scholar 

  47. Wang, X., Su, Y., Luo, C., Nian, F., Teng, L.: Color image encryption algorithm based on hyperchaotic system and improved quantum revolving gate. Multimed. Tools Appl. 81(10), 13845–13865 (2022)

    Google Scholar 

  48. Liu, X., Xiao, D., Liu, C.: Three-level quantum image encryption based on Arnold transform and logistic map. Quantum Inf. Process. 20(1), 1–22 (2021)

    ADS  MathSciNet  Google Scholar 

  49. Gao, Y.J., Xie, H.W., Zhang, J., Zhang, H.: A novel quantum image encryption technique based on improved controlled alternated quantum walks and hyperchaotic system. Phys. A Stat. Mech. Appl. 598, 127334 (2022)

    MathSciNet  Google Scholar 

  50. Liu, X.: Quantum image encryption based on baker map and DNA circular shift operation. Phys. Scr. 98(11), 115112 (2023)

    ADS  Google Scholar 

  51. Yu, F.F., Dai, J.Y., Liu, S.H., Gong, L.H.: Visually meaningful quantum color image encryption scheme based on measured alternate quantum walks and quantum logistic mixed linear-nonlinear coupled mapping lattices. Int. J. Theor. Phys. 62(2), 33 (2023)

    MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Ling Wang was involved in conceptualization, methodology and software. Qiwen Ran was responsible for supervision and validation. Junrong Ding contributed to formal analysis and writing–reviewing and editing.

Corresponding author

Correspondence to Ling Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Ran, Q. & Ding, J. A three-layer quantum multi-image encryption scheme. Quantum Inf Process 23, 123 (2024). https://doi.org/10.1007/s11128-024-04327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04327-8

Keywords