Abstract
We present a new iterative rotation inversion technique based on the Simultaneous Algebraic Reconstruction Technique developed for image reconstruction. We describe in detail our algorithmic implementation and compare it to the classical inversion techniques like the Regularized Least Squares (RLS) and the Optimally Localized Averages (OLA) methods. In our implementation, we are able to estimate the formal uncertainty on the inferred solution using standard error propagation, and derive the averaging kernels without recourse to any Monte-Carlo simulation. We present the potential of this new technique using simulated rotational frequency splittings. We use noiseless sets that cover the range of observed modes and associate to these artificial splittings observational uncertainties. We also add random noise to present the noise magnification immunity of the method. Since the technique is iterative we also show its potential when using an a priori solution. With the correct regularization, this new method can outperform our RLS implementation in precision, scope, and resolution. Since it results in very different averaging kernels where the solution is poorly constrained, this technique infers different values. Adding such a technique to our compendium of inversion methods will allow us to improve the robustness of our inferences when inverting real observations and better understand where they might be biased and/or unreliable, as we push our techniques to maximize the diagnostic potential of our observations.
Similar content being viewed by others
Data Availability
No datasets were generated or analyzed during the current study.
Notes
These models were devised by Dr. A. Kosovichev, and already used in a “hare and hounds” exercise back in 1998, see Appendix A of Schou et al. (1998), while the ongoing collaboration was initiated by the late Dr. M. Thompson and is now led by Dr. J. Christensen-Dalsgaard and should be eventually published in Christensen-Dalsgaard et al. (in preparation).
The parameters of the variable regularization are \((W_{o}, f_{r}, f_{\theta}, \gamma _{\theta}, \gamma _{r})=\) (1E-2, 99, 1, 3, 3) for \(W^{(r)}\) and (3.6E-2, 0, 1, 1, 3) for \(W^{(\theta )}\).
References
Anderson, A.H., Kak, A.C.: 1984, Ultrason. Imag. 6, 81. DOI.
Antia, H.M., Basu, S.: 2011, Astrophys. J. 735, L45. DOI.
Backus, G., Gilbert, F.: 1968, Geophys. J. 16(2), 169. DOI.
Barekat, A., Schou, J., Gizon, L.: 2014, Astron. Astrophys. 570, L12. DOI.
Barrett, R.K.: 1994, Ph. D. Thesis.
Basu, S.: 2016, Living Rev. Solar Phys. 13, 2. DOI.
Basu, S., Antia, H.M.: 2019, Astrophys. J. 883, 93. DOI.
Chaplin, W.J., Basu, S.: 2008, Solar Phys. 251, 53. DOI.
Christensen-Dalsgaard, J., Hansen, P.C., Thompson, M.J.: 1993, Mon. Not. Roy. Astron. Soc. 264, 541. DOI.
Christensen-Dalsgaard, J., Dappen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., et al.: 1996, Science 272, 1286. DOI.
Corbard, T., Berthomieu, G., Provost, J., Morel, P.: 1998, Astron. Astrophys. 330, 1149. DOI.
Eff-Darwich, A., Korzennik, S.G.: 2013, Solar Phys. 287, 43. DOI.
Eff-Darwich, A., Korzennik, S.G., García, R.A.: 2010, Astron. Nachr. 331, 890. DOI.
Eff-Darwich, A., Pérez Hernández, F.: 1997, Astron. Astrophys. Suppl. Ser. 125, 391. DOI.
Eff-Darwich, A., Korzennik, S.G., Jiménez-Reyes, S.J., García, R.A.: 2008, Astrophys. J. 679, 1636. DOI.
Engl, H.W., Hanke, M., Neubauer, A.: 1996, Regularization of Inverse Problems, Kluwer Academic, Dordrecht.
Fossat, E., Boumier, P., Corbard, T., Provost, J., Salabert, D., Schmider, F.X., et al.: 2017, Astron. Astrophys. 604, A40. DOI.
Gizon, L., Birch, A.C.: 2005, Living Rev. Solar Phys. 2, 6. DOI.
Hansen, C., Cox, J., van Horn, H.: 1977, Astrophys. J. 217, 151.
Howe, R.: 2009, Living Rev. Solar Phys. 1. http://solarphysics.livingreviews.org/Articles/lrsp-2009-1/6.
Howe, R.: 2016, Asian J. Phys. 25, 311.
Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., et al.: 2000, Science 287, 2456. DOI.
Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R., Schou, J., Thompson, M.J.: 2005, Astrophys. J. 634, 1405. DOI.
Korzennik, S.G.: 1990, Ph. D. Thesis.
Korzennik, S.G.: 2023, Front. Astron. Space Sci. 9, 1031313. DOI.
Mathur, S., Eff-Darwich, A., García, R.A., Turck-Chièze, S.: 2008, Astron. Astrophys. 484, 517. DOI.
McGaughey, W.J., Young, R.P.: 1990 In: SEG Annual Meeting. San Francisco, California. Paper presented at the 1990, 1990.
Pijpers, F.P., Thompson, M.J.: 1994, Astron. Astrophys. 281, 231.
Rhodes, E.J., Cacciani, A., Korzennik, S., Tomczyk, S., Ulrich, R.K., Woodard, M.F.: 1990, Astrophys. J. 351, 687. DOI.
Scherrer, P.H., Gough, D.O.: 2019, Astrophys. J. 877, 42. DOI.
Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M., et al.: 1998, Astrophys. J. 505, 390. DOI.
Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M., Christensen-Dalsgaard, J., Di Mauro, M.P., Dziembowski, W.A., Eff-Darwich, A., Gough, D.O., Haber, D.A., Hoeksema, J.T., Howe, R., Korzennik, S.G., Kosovichev, A.G., Larsen, R.M., Pijpers, F.P., Scherrer, P.H., Sekii, T., Tarbell, T.D., Title, A.M., Thompson, M.J., Toomre, J.: 2008, Astrophys. J. 505, 390.
Sorzano, C., Vargas, J., Otón, J., de la Rosa-Trevín, J., Vilas, J., Kazemi, M., Melero, R., del Caño, L., Cuenca, J., Conesa, P., Gómez-Blanco, J., Marabini, R.: 2017, BioMed Research International 2017 1. DOI.
Sudnik, M., Thompson, M.J.: 2009, In: ASP Conference Series: Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology. 416, 411.
Thompson, M.J., Toomre, J., Anderson, E., Antia, H.M., Berthomieu, G., Burtonclay, D., Chitre, S.M., Christensen-Dalsgaard, J., Corbard, T., DeRosa, M.L., Genovese, C.R., Gough, D.O., Haber, D.A., Harvey, J.W., Hill, F., Howe, R., Korzennik, S.G., Kosovichev, A.G., Leibacher, J.W., Pijpers, F.P., Provost, J., Rhodes, E.J., Schou, J., Sekii, T., Stark, P.B., Wilson, P. (eds.): 1996, Science 272, 1300.
van der Sluis, A., van der Vorst, H.A.: 1990, Linear Algebra Appl. 130, 257.
Vorontsov, S.V., Christensen-Dalsgaard, J., Schou, J., Strakhov, V.N., Thompson, M.J.: 2002, Science 296, 101. DOI.
Xu, X.-L., Liow, J.-S., Strother, S.C.: 1993, Med. Phys. 20, 1675.
Funding
This work was partially supported by NASA grants 80NSSC22K0516 and NNH18ZDA001N–DRIVE to SGK and by the Spanish AEI programs PID2019–107187GB–I00 (STrESS), PID2019–104571RA–I00 (COMPACT), PID2022–139159NB–I00 (Volca-Motion) and PID2022–140483NB–C21 (HARMONI) to AED.
Author information
Authors and Affiliations
Contributions
SGK and AED contributed equally to the presented work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Korzennik, S.G., Eff-Darwich, A. A SART-Based Iterative Inversion Methodology to Infer the Solar Rotation Rate from Global Helioseismic Data. Sol Phys 299, 86 (2024). https://doi.org/10.1007/s11207-024-02334-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11207-024-02334-7