Abstract
Designing an efficient topology is a critical challenge for large-scale data center networks. Although the current switch-centric network topologies have high bisection bandwidth, they bear the disadvantage of high network cost. In this paper, we propose a novel switch-centric data center network topology called Hyper Hoffman–Singleton (HHS). HHS is a symmetric multi-dimensional topology, in which switches form a Hoffman–Singleton graph in each dimension. The proposed topology can accommodate a large number of servers with small network diameter, low cost and high bisection bandwidth. We also present a multipath routing algorithm for HHS. Our simulation results show that the HHS network offers low latency and high throughput under different workloads. By comparing with the existing data center network topologies, we show that HHS is a promising candidate for large-scale data centers because of its ability to achieve a desirable trade-off between performance and cost, without introducing any overheads on servers.
Similar content being viewed by others
Notes
The price is based on http://www.colfaxdirect.com.
References
Zhang Y, Ansari N (2013) On architecture design, congestion notification, tcp incast and power consumption in data centers. IEEE Commun Surv Tutor 15(1):39–64
Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity data center network architecture. In: ACM SIGCOMM computer communication review, vol 38. ACM, pp 63–74
Greenberg A, Hamilton JR, Jain N, Kandula S, Kim C, Lahiri P, Maltz DA, Patel P, Sengupta S (2009) Vl2: a scalable and flexible data center network. In: ACM SIGCOMM computer communication review, vol 39. ACM, pp 51–62
Kim J, Dally WJ, Abts D (2007) Flattened butterfly: a cost-efficient topology for high-radix networks. In: Proceedings of international symposium on computer architecture (ISCA’07), vol 35. ACM, pp 126–137
Abts D, Marty MR, Wells PM, Klausler P, Liu H (2010) Energy proportional datacenter networks. In: Proceedings of international symposium on computer architecture (ISCA’10), vol 38. ACM, pp 338–347
Ahn JH, Binkert N, Davis A, McLaren M, Schreiber RS (2009) Hyperx: topology, routing, and packaging of efficient large-scale networks. In: Proceedings of the conference on high performance computing networking, storage and analysis. ACM, p 41
Azizi S, Safaei F, Hashemi N (2013) On the topological properties of hyperx. J Supercomput 66(1):572–593
Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S (2008) Dcell: a scalable and fault-tolerant network structure for data centers. In: ACM SIGCOMM computer communication review, vol 38. ACM, pp 75–86
Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S (2009) Bcube: a high performance, server-centric network architecture for modular data centers. In: ACM SIGCOMM computer communication review, vol 39. ACM, pp 63–74
Li D, Guo C, Wu H, Tan K, Zhang Y, Lu S, Wu J (2011) Scalable and cost-effective interconnection of data-center servers using dual server ports. IEEE/ACM Trans Netw 19(1):102–114
Liao Y, Yin J, Yin D, Gao L (2012) Dpillar: dual-port server interconnection network for large scale data centers. Comput Netw 56(8):2132–2147
Li D, Wu J (2014) On the design and analysis of data center network architectures for interconnecting dual-port servers. In: IEEE INFOCOM. IEEE, pp 1851–1859
Li Z, Guo Z, Yang Y (2014) Bccc: an expandable network for data centers. In: Proceedings of the 10th ACM/IEEE symposium on architectures for networking and communications systems. ACM, pp 77–88
Wang T, Su Z, Xia Y, Hamdi M (2014) Rethinking the data center networking: architecture, network protocols, and resource sharing. In: IEEE access, vol 2. IEEE, pp 1481–1496
Li D, Guo C, Wu H, Tan K, Zhang Y, Lu S (2009) Ficonn: using backup port for server interconnection in data centers. In: IEEE INFOCOM. IEEE, pp 2276–2285
Kreutz D, Ramos FMV, Verissimo PE, Rothenberg CE, Azodolmolky S, Uhlig S (2015) Software-defined networking: a comprehensive survey. In: Proceedings of the IEEE, vol 103. IEEE, pp 14–76
Hoffman AJ, Singleton RR (1960) On moore graphs with diameters 2 and 3. IBM J Res Dev 4(5):497–504
Dally WJ, Towles BP (2004) Principles and practices of interconnection networks. Morgan Kaufmann, Massachusetts
Jantsch A, Tenhunen H et al (2003) Networks on chip, vol 396. Kluwer, Dordrecht
Parhami B (2002) Introduction to parallel processing: algorithms and architectures. Kluwer, Dordrecht
Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images. Comput J 30(5):425–432
Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. Computer graphics forum, vol 8. Wiley, New York, pp 3–11
Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th annual international high performance computing conference, pp 349–357
Wani MA, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at reconfigurable multiring network. J Supercomput 25(1):43–62
Liu Y, Muppala JK, Veeraraghavan M, Lin D, Hamdi M (2013) Data center networks: Topologies, architectures and fault-tolerance characteristics. Springer Briefs in Computer Science
Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113
Ghemawat S, Gobioff H, Leung S-T (2003) The google file system. In: ACM SIGOPS operating systems review, vol 37. ACM, pp 29–43
Besta M, Hoefler T (2014) Slim fly: a cost effective low-diameter network topology. In: International conference on high performance computing, networking, storage and analysis (SC’14). IEEE, pp 348–359
Farrington N, Rubow E, Vahdat A (2009) Data center switch architecture in the age of merchant silicon. In: Proceedings of the 17th IEEE symposium on high performance interconnects (HOTI ’09). IEEE, pp 93–102
Bao W-T, Fu B-Z, Chen M-Y, Zhang L-X (2014) A high-performance and cost-efficient interconnection network for high-density servers. Comput Sci Technol 29(2):281–292
Abts D, Kim J (2011) High performance datacenter networks: architectures, algorithms, and opportunities. Morgan & Claypool Publishers
Nayebi A, Meraji S, Shamaei A, Sarbazi-Azad H (2007) Xmulator: a listener-based integrated simulation platform for interconnection networks. In: Proceedings of the 1st Asia international conference on modelling and simulation (AMS’07). IEEE, pp 128–132
Duato J, Yalamanchili S, Ni LM (2003) Interconnection networks: an engineering approach. Morgan Kaufmann, Massachusetts
Ould-Khaoua M, Sarbazi-Azad H (2001) An analytical model of adaptive wormhole routing in hypercubes in the presence of hotspot traffic. IEEE Trans Parallel Distrib Syst 12(3):283–292
Requena CG (2010) Low-memory techniques for routing and fault-tolerance on the Fat-Tree topology. PhD thesis, Universidad Politécnica de Valencia
Al-Fares M, Radhakrishnan S, Raghavan B, Huang N, Vahdat A (2010) Hedera: dynamic flow scheduling for data center networks. In: USENIX NSDI
Benson T, Akella A, Maltz DA (2010) Network traffic characteristics of data centers in the wild. In: Proceedings of the 10th ACM SIGCOMM conference on internet measurement. ACM, pp 267–280
Kandula S, Sengupta S, Greenberg A, Patel P, Chaiken R (2009) The nature of data center traffic: measurements and analysis. In: Proceedings of the 9th ACM SIGCOMM conference on internet measurement. ACM, pp 202–208
Bhuyan LN, Agrawal DP (1984) Generalized hypercube and hyperbus structures for a computer network. IEEE Trans Comput 100(4):323–333
Popa L, Ratnasamy S, Iannaccone G, Krishnamurthy A, Stoica I (2010) A cost comparison of datacenter network architectures. In: CoNEXT. ACM
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Azizi, S., Hashemi, N. & Khonsari, A. HHS: an efficient network topology for large-scale data centers. J Supercomput 72, 874–899 (2016). https://doi.org/10.1007/s11227-015-1617-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-015-1617-3