Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

HHS: an efficient network topology for large-scale data centers

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Designing an efficient topology is a critical challenge for large-scale data center networks. Although the current switch-centric network topologies have high bisection bandwidth, they bear the disadvantage of high network cost. In this paper, we propose a novel switch-centric data center network topology called Hyper Hoffman–Singleton (HHS). HHS is a symmetric multi-dimensional topology, in which switches form a Hoffman–Singleton graph in each dimension. The proposed topology can accommodate a large number of servers with small network diameter, low cost and high bisection bandwidth. We also present a multipath routing algorithm for HHS. Our simulation results show that the HHS network offers low latency and high throughput under different workloads. By comparing with the existing data center network topologies, we show that HHS is a promising candidate for large-scale data centers because of its ability to achieve a desirable trade-off between performance and cost, without introducing any overheads on servers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The price is based on http://www.colfaxdirect.com.

References

  1. Zhang Y, Ansari N (2013) On architecture design, congestion notification, tcp incast and power consumption in data centers. IEEE Commun Surv Tutor 15(1):39–64

    Article  Google Scholar 

  2. Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity data center network architecture. In: ACM SIGCOMM computer communication review, vol 38. ACM, pp 63–74

  3. Greenberg A, Hamilton JR, Jain N, Kandula S, Kim C, Lahiri P, Maltz DA, Patel P, Sengupta S (2009) Vl2: a scalable and flexible data center network. In: ACM SIGCOMM computer communication review, vol 39. ACM, pp 51–62

  4. Kim J, Dally WJ, Abts D (2007) Flattened butterfly: a cost-efficient topology for high-radix networks. In: Proceedings of international symposium on computer architecture (ISCA’07), vol 35. ACM, pp 126–137

  5. Abts D, Marty MR, Wells PM, Klausler P, Liu H (2010) Energy proportional datacenter networks. In: Proceedings of international symposium on computer architecture (ISCA’10), vol 38. ACM, pp 338–347

  6. Ahn JH, Binkert N, Davis A, McLaren M, Schreiber RS (2009) Hyperx: topology, routing, and packaging of efficient large-scale networks. In: Proceedings of the conference on high performance computing networking, storage and analysis. ACM, p 41

  7. Azizi S, Safaei F, Hashemi N (2013) On the topological properties of hyperx. J Supercomput 66(1):572–593

    Article  Google Scholar 

  8. Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S (2008) Dcell: a scalable and fault-tolerant network structure for data centers. In: ACM SIGCOMM computer communication review, vol 38. ACM, pp 75–86

  9. Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S (2009) Bcube: a high performance, server-centric network architecture for modular data centers. In: ACM SIGCOMM computer communication review, vol 39. ACM, pp 63–74

  10. Li D, Guo C, Wu H, Tan K, Zhang Y, Lu S, Wu J (2011) Scalable and cost-effective interconnection of data-center servers using dual server ports. IEEE/ACM Trans Netw 19(1):102–114

    Article  Google Scholar 

  11. Liao Y, Yin J, Yin D, Gao L (2012) Dpillar: dual-port server interconnection network for large scale data centers. Comput Netw 56(8):2132–2147

    Article  Google Scholar 

  12. Li D, Wu J (2014) On the design and analysis of data center network architectures for interconnecting dual-port servers. In: IEEE INFOCOM. IEEE, pp 1851–1859

  13. Li Z, Guo Z, Yang Y (2014) Bccc: an expandable network for data centers. In: Proceedings of the 10th ACM/IEEE symposium on architectures for networking and communications systems. ACM, pp 77–88

  14. Wang T, Su Z, Xia Y, Hamdi M (2014) Rethinking the data center networking: architecture, network protocols, and resource sharing. In: IEEE access, vol 2. IEEE, pp 1481–1496

  15. Li D, Guo C, Wu H, Tan K, Zhang Y, Lu S (2009) Ficonn: using backup port for server interconnection in data centers. In: IEEE INFOCOM. IEEE, pp 2276–2285

  16. Kreutz D, Ramos FMV, Verissimo PE, Rothenberg CE, Azodolmolky S, Uhlig S (2015) Software-defined networking: a comprehensive survey. In: Proceedings of the IEEE, vol 103. IEEE, pp 14–76

  17. Hoffman AJ, Singleton RR (1960) On moore graphs with diameters 2 and 3. IBM J Res Dev 4(5):497–504

  18. Dally WJ, Towles BP (2004) Principles and practices of interconnection networks. Morgan Kaufmann, Massachusetts

    Google Scholar 

  19. Jantsch A, Tenhunen H et al (2003) Networks on chip, vol 396. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  20. Parhami B (2002) Introduction to parallel processing: algorithms and architectures. Kluwer, Dordrecht

    Google Scholar 

  21. Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images. Comput J 30(5):425–432

    Article  Google Scholar 

  22. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. Computer graphics forum, vol 8. Wiley, New York, pp 3–11

    Google Scholar 

  23. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th annual international high performance computing conference, pp 349–357

  24. Wani MA, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at reconfigurable multiring network. J Supercomput 25(1):43–62

    Article  MATH  Google Scholar 

  25. Liu Y, Muppala JK, Veeraraghavan M, Lin D, Hamdi M (2013) Data center networks: Topologies, architectures and fault-tolerance characteristics. Springer Briefs in Computer Science

  26. Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113

    Article  Google Scholar 

  27. Ghemawat S, Gobioff H, Leung S-T (2003) The google file system. In: ACM SIGOPS operating systems review, vol 37. ACM, pp 29–43

  28. Besta M, Hoefler T (2014) Slim fly: a cost effective low-diameter network topology. In: International conference on high performance computing, networking, storage and analysis (SC’14). IEEE, pp 348–359

  29. Farrington N, Rubow E, Vahdat A (2009) Data center switch architecture in the age of merchant silicon. In: Proceedings of the 17th IEEE symposium on high performance interconnects (HOTI ’09). IEEE, pp 93–102

  30. Bao W-T, Fu B-Z, Chen M-Y, Zhang L-X (2014) A high-performance and cost-efficient interconnection network for high-density servers. Comput Sci Technol 29(2):281–292

    Article  Google Scholar 

  31. Abts D, Kim J (2011) High performance datacenter networks: architectures, algorithms, and opportunities. Morgan & Claypool Publishers

  32. Nayebi A, Meraji S, Shamaei A, Sarbazi-Azad H (2007) Xmulator: a listener-based integrated simulation platform for interconnection networks. In: Proceedings of the 1st Asia international conference on modelling and simulation (AMS’07). IEEE, pp 128–132

  33. Duato J, Yalamanchili S, Ni LM (2003) Interconnection networks: an engineering approach. Morgan Kaufmann, Massachusetts

    Google Scholar 

  34. Ould-Khaoua M, Sarbazi-Azad H (2001) An analytical model of adaptive wormhole routing in hypercubes in the presence of hotspot traffic. IEEE Trans Parallel Distrib Syst 12(3):283–292

    Article  MathSciNet  Google Scholar 

  35. Requena CG (2010) Low-memory techniques for routing and fault-tolerance on the Fat-Tree topology. PhD thesis, Universidad Politécnica de Valencia

  36. Al-Fares M, Radhakrishnan S, Raghavan B, Huang N, Vahdat A (2010) Hedera: dynamic flow scheduling for data center networks. In: USENIX NSDI

  37. Benson T, Akella A, Maltz DA (2010) Network traffic characteristics of data centers in the wild. In: Proceedings of the 10th ACM SIGCOMM conference on internet measurement. ACM, pp 267–280

  38. Kandula S, Sengupta S, Greenberg A, Patel P, Chaiken R (2009) The nature of data center traffic: measurements and analysis. In: Proceedings of the 9th ACM SIGCOMM conference on internet measurement. ACM, pp 202–208

  39. Bhuyan LN, Agrawal DP (1984) Generalized hypercube and hyperbus structures for a computer network. IEEE Trans Comput 100(4):323–333

    Article  MATH  Google Scholar 

  40. Popa L, Ratnasamy S, Iannaccone G, Krishnamurthy A, Stoica I (2010) A cost comparison of datacenter network architectures. In: CoNEXT. ACM

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Hashemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, S., Hashemi, N. & Khonsari, A. HHS: an efficient network topology for large-scale data centers. J Supercomput 72, 874–899 (2016). https://doi.org/10.1007/s11227-015-1617-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-015-1617-3

Keywords