Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An unequal cluster-based routing scheme for multi-level heterogeneous wireless sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In wireless sensor networks (WSNs), clustering can significantly reduce energy dissipation of nodes, and also increase communication load of cluster heads. When multi-hop communication model is adopted in clustering, “energy hole” problem may occur due to unbalanced energy consumption among cluster heads. Recently, many multi-hop clustering protocols have been proposed to solve this problem. And the main way is using unequal clustering to control the size of clusters. However, many of these protocols are about homogeneous networks and few are about heterogeneous networks. In this paper, we present an unequal cluster-based routing scheme for WSNs with multi-level energy heterogeneity called UCR-H. The sensor field is partitioned into a number of equal-size rectangular units. We first calculate the number of clusters in each unit by balancing energy consumption among the cluster heads in different units. And then we find the optimal number of units by minimizing the total energy consumption of inter-cluster forwarding. Finally, the size of clusters in each unit is elaborately designed based on node’s energy level and the number of clusters in this unit. And a threshold is also designed to avoid excessive punishment to the nodes with higher energy level. Simulation results show that our scheme effectively mitigates the “energy hole” problem and achieves an obvious improvement on the network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  2. Baronti, P., Pillai, P., Chook, V. W. C., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications, 30(7), 1655–1695.

    Article  Google Scholar 

  3. Yang, J., Zhang, C., Li, X., Huang, Y., Fu, S., & Acevedo, M. F. (2009). Integration of wireless sensor networks in environmental monitoring cyber infrastructure. Wireless Networks, 16(4), 1091–1108.

    Article  Google Scholar 

  4. Wang, X., Le, D., Cheng, H., & Xie, C. (2014). All-IP wireless sensor networks for real-time patient monitoring. Journal of Biomedical Informatics, 52, 406–417.

    Article  Google Scholar 

  5. Giménez, P., Molina, B., Calvo-Gallego, J., Esteve, M., & Palau, C. E. (2014). I3WSN: Industrial intelligent wireless sensor networks for indoor environments. Computers in Industry, 65(1), 187–199.

    Article  Google Scholar 

  6. Cai, X., Hu, A., & Liu, R. (2011). Design of intelligent inductive security system based on wireless sensor network. Energy Procedia, 12, 718–725.

    Article  Google Scholar 

  7. Ramesh, M. V. (2014). Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Networks, 13, 2–18.

    Article  Google Scholar 

  8. Ruitao, X., & Xiaohua, J. (2014). Transmission-efficient clustering method for wireless sensor networks using compressive sensing. IEEE Transactions on Parallel and Distributed Systems, 25(3), 806–815.

    Article  Google Scholar 

  9. Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.

    Article  Google Scholar 

  10. Liu, X. (2012). A survey on clustering routing protocols in wireless sensor networks. Sensors (Basel), 12(8), 11113–11153.

    Article  Google Scholar 

  11. Li, C., Zhang, H., Hao, B., & Li, J. (2011). A survey on routing protocols for large-scale wireless sensor networks. Sensors (Basel), 11(4), 3498–3526.

    Article  Google Scholar 

  12. Shamsan Saleh, A. M., Ali, B. M., Rasid, M. F. A., & Ismail, A. (2014). A survey on energy awareness mechanisms in routing protocols for wireless sensor networks using optimization methods. Transactions on Emerging Telecommunications Technologies, 25(12), 1184–1207.

    Article  Google Scholar 

  13. Afsar, M. M., & Tayarani-N, M.-H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications, 46, 198–226.

    Article  Google Scholar 

  14. Radi, M., Dezfouli, B., Abu Bakar, K., & Lee, M. (2012). Multipath routing in wireless sensor networks: Survey and research challenges. Sensors (Basel), 12(1), 650–685.

    Article  Google Scholar 

  15. Mhatre, V., & Rosenberg, C. (2004). Homogeneous vs heterogeneous clustered sensor networks: A comparative study. In Proceedings of 2004 IEEE international conference on communications (pp. 1–6). doi:10.1109/ICC.2004.1313223.

  16. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii international conference on system sciences (pp. 1–10). doi:10.1109/HICSS.2000.926982.

  17. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  18. Lindsey, S., & Raghavendra C. S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. In Proceedings of the IEEE aerospace conference, Montana, USA (Vol. 3, pp. 1125–1130).

  19. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  20. Chen, G., Li, C., Ye, M., & Wu, J. (2009). An unequal cluster-based routing protocol in wireless sensor networks. Wireless Networks, 15(2), 193–207.

    Article  Google Scholar 

  21. Liu, T., Li, Q., & Liang, P. (2012). An energy-balancing clustering approach for gradient-based routing in wireless sensor networks. Computer Communications, 35(17), 2150–2161.

    Article  Google Scholar 

  22. Li, H., Liu, Y., Chen, W., Jia, W., Li, B., & Xiong, J. (2013). COCA: Constructing optimal clustering architecture to maximize sensor network lifetime. Computer Communications, 36(3), 256–268.

    Article  Google Scholar 

  23. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Proceedings of the international workshop on sensor and actor network protocols and applications (pp. 1–11).

  24. Qing, L., Zhu, Q., & Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Computer Communications, 29(12), 2230–2237.

    Article  Google Scholar 

  25. Elbhiri, B., Saadane, R., El Fkihi, S., & Aboutajdine, D. (2010). Developed distributed energy-efficient clustering (DDEEC) for heterogeneous wireless sensor networks. In 5th international symposium on I/V communications and mobile network (pp. 1–4). doi:10.1109/ISVC.2010.5656252.

  26. Javaid, N., Qureshi, T. N., Khan, A. H., Iqbal, A., Akhtar, E., & Ishfaq, M. (2013). EDDEEC: Enhanced developed distributed energy-efficient clustering for heterogeneous wireless sensor networks. Procedia Computer Science, 19, 914–919.

    Article  Google Scholar 

  27. Chamam, A., & Pierre, S. (2010). A distributed energy-efficient clustering protocol for wireless sensor networks. Computers & Electrical Engineering, 36(2), 303–312.

    Article  Google Scholar 

  28. Chi, Y.-P., & Chang, H.-P. (2013). An energy-aware grid-based routing scheme for wireless sensor networks. Telecommunication Systems, 54(4), 405–415.

    Article  Google Scholar 

  29. Powell, O., Leone, P., & Rolim, J. (2007). Energy optimal data propagation in wireless sensor networks. Journal of Parallel and Distributed Computing, 67(3), 302–317.

    Article  Google Scholar 

  30. Yang, L., Lu, Y.-Z., Zhong, Y.-C., Wu, X.-G., & Xing, S.-J. (2015). A hybrid, game theory based, and distributed clustering protocol for wireless sensor networks. Wireless Networks, 22, 1007–1021. doi:10.1007/s11276-015-1011-3.

    Article  Google Scholar 

  31. Liu, A.-F., Zhang, P.-H., & Chen, Z.-G. (2011). Theoretical analysis of the lifetime and energy hole in cluster based wireless sensor networks. Journal of Parallel and Distributed Computing, 71(10), 1327–1355.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Scientific and Technological Project of Chongqing (Grant No. CSTC2012gg-yyjs40010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Lu, YZ., Zhong, YC. et al. An unequal cluster-based routing scheme for multi-level heterogeneous wireless sensor networks. Telecommun Syst 68, 11–26 (2018). https://doi.org/10.1007/s11235-017-0372-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0372-6

Keywords