Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Optimal Operation of Hydropower Reservoir Systems Using Weed Optimization Algorithm

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The optimal hydropower operation of reservoir systems is known as a complex nonlinear nonconvex optimization problem. This paper presents the application of invasive weed optimization (IWO) algorithm, which is a novel evolutionary algorithm inspired from colonizing weeds, for optimal operation of hydropower reservoir systems. The IWO algorithm is used to optimally solve the hydropower operation problems for both cases of single reservoir and multi reservoir systems, over short, medium and long term operation periods, and the results are compared with the existing results obtained by the two most commonly used evolutionary algorithms, namely, particle swam optimization (PSO) and genetic algorithm (GA). The results show that the IWO is more efficient and effective than PSO and GA for both single reservoir and multi reservoir hydropower operation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afshar MH (2012) Large scale reservoir operation by constrained particle swarm optimization algorithms. J Hydro Environ Res 6(1):75–87

    Article  Google Scholar 

  • Afshar MH (2013a) Extension of the constrained particle swarm optimization algorithm to optimal operation of multi-reservoirs system. Int J Electr Power Energy Syst 51:71–81

    Article  Google Scholar 

  • Afshar MH (2013b) A cellular automata approach for the hydro-power operation of multi-reservoir systems. Proc ICE Water Manag 166(9):465–478

    Google Scholar 

  • Afshar MH, Shahidi M (2009) Optimal solution of large-scale reservoir-operation problems: cellular-automata versus heuristic-search methods. Eng Optim 41(3):275–293

    Article  Google Scholar 

  • Afshar MH, Ketabchi H, Rasa E (2006) Elitist continuous ant colony optimization algorithm: application to reservoir operation problems. Int J Civ Eng 4(3):274–285

    Google Scholar 

  • Afshar A, Massoumi F, Afshar A, Mariño MA (2015) State of the art review of ant colony optimization applications in water resource management. Water Resour Manag 29(11):3891–3904

    Article  Google Scholar 

  • Akbari-Alashti H, Bozorg-Haddad O, Fallah-Mehdipour E, Mariño MA (2014) Multi-reservoir real-time operation rule using fixed length gene genetic programming (FLGGP). Proc Inst Civ Eng Water Manage 167(10):561–576

    Article  Google Scholar 

  • Akbari-Alashti H, Bozorg-Haddad O, Mariño MA (2015) Application of fixed length gene genetic programming (FLGGP) in hydropower reservoir operation. Water Resour Manag 29(9):3357–3370

    Article  Google Scholar 

  • Allen RB, Bridgeman SG (1986) Dynamic programming in hydropower scheduling. J Water Resour Plan Manag 112(3):339–353

    Article  Google Scholar 

  • Arnold E, Tatjewski P, Wołochowicz P (1994) Two methods for large-scale nonlinear optimization and their comparison on a case study of hydropower optimization. J Optim Theory Appl 81(2):221–248

    Article  Google Scholar 

  • Asgari HR, Bozorg Haddad O, Pazoki M, Loáiciga HA (2015) Weed optimization algorithm for optimal reservoir operation. J Irrig Drain Eng:04015055

  • Barisal AK, Prusty RC (2015) Large scale economic dispatch of power systems using oppositional invasive weed optimization. Appl Soft Comput 29:122–137

    Article  Google Scholar 

  • Bozorg-Haddad O, Afshar A, Mariño MA (2006) Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour Manag 20(5):661–680

    Article  Google Scholar 

  • Bozorg-Haddad O, Afshar A, Mariño MA (2011) Multireservoir optimization in discrete and continuous domains. Proc Inst Civ Eng Water Manage 164(2):57–72

    Article  Google Scholar 

  • Bozorg-Haddad O, Karimirad I, Seifollahi-Aghmiuni S, Loáiciga HA (2015a) Development and application of the bat algorithm for optimizing the operation of reservoir systems. J Water Resour Plan Manag 141(8). doi:10.1061/(ASCE)WR.1943-5452.0000498.04014097

  • Bozorg-Haddad O, Moravej M, Loáiciga HA (2015b) Application of the water cycle algorithm to the optimal operation of reservoir systems. J Irrig Drain Eng 141(5). doi:10.1061/(ASCE)IR.1943-4774.0000832.04014064

  • Bozorg-Haddad O, Hosseini-Moghari SM, Loáiciga HA (2016) Biogeography-based optimization algorithm for optimal operation of reservoir systems. J Water Resour Plan Manag 142(1). doi:10.1061/(ASCE)WR.1943-5452.0000558.04015034

  • Chowdhury A, Bose S, Das S (2011) Automatic clustering based on invasive weed optimization algorithm. In: Swarm, evolutionary, and memetic computing. Springer Berlin, Heidelberg, pp. 105–112

    Chapter  Google Scholar 

  • Ellis JH, ReVelle CS (1988) A Separable linear algorithm for hydropower optimization. JAWRA 24:435–447

    Google Scholar 

  • Esat V, Hall MJ (1994) Water resources system optimization using genetic algorithms. Hydroinformatics 94:225–231

    Google Scholar 

  • Fallah-Mehdipour E, Bozorg-Haddad O, Mariño MA (2013) Developing reservoir operational decision rule by genetic programming. J Hydroinf 15(1):103–119

    Article  Google Scholar 

  • Garousi-Nejad I, Bozorg-Haddad O, Loáiciga HA (2016a) Modified firefly algorithm for solving multireservoir operation in continuous and discrete domains. J Water Resour Plan Manag. doi:10.1061/(ASCE)WR.1943-5452.0000644

    Google Scholar 

  • Garousi-Nejad I, Bozorg-Haddad O, Loáiciga HA, Mariño MA (2016b) Application of the firefly algorithm to optimal operation of reservoirs with the purpose of irrigation supply and hydropower production. J Irrig Drain Eng. doi:10.1061/(ASCE)IR.1943-4774.0001064

    Google Scholar 

  • Ghasemi M, Ghavidel S, Akbari E, Vahed AA (2014) Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos. Energy 73:340–353

    Article  Google Scholar 

  • Goharian E, Burian S, Bardsley T, Strong C (2015) Incorporating potential severity into vulnerability assessment of water supply systems under climate change conditions. J Water Resour Plan Manag 142(2). doi:10.1061/(ASCE)WR.1943-5452.0000579.04015051

  • Jothiprakash V, Shanthi G (2006) Single reservoir operating policies using genetic algorithm. Water Resour Manag 20(6):917–929

    Article  Google Scholar 

  • Kangrang A, Compliew S, Hormwichian R (2010) Optimal reservoir rule curves using simulated annealing. Proc ICE Water Manag 164(1):27–34

    Google Scholar 

  • Karamouz M, Goharian E, Nazif S (2013) Reliability assessment of the water supply systems under uncertain future extreme climate conditions. Earth Interact 17(20):1–27. doi:10.1175/2012EI000503.1

    Article  Google Scholar 

  • Karimkashi S, Kishk A (2010) Invasive weed optimization and its features in electromagnetics. IEEE Trans Antennas Propag 58(4):1269–1278

    Article  Google Scholar 

  • Larson RE (1968) State increment dynamic programming. American Elsevier, New York

    Google Scholar 

  • Li C, Zhou J, Ouyang S, Ding X, Chen L (2014) Improved decomposition–coordination and discrete differential dynamic programming for optimization of large-scale hydropower system. Energy Convers Manag 84:363–373

    Article  Google Scholar 

  • Louati MH, Benabdallah S, Lebdi F, Milutin D (2011) Application of a genetic algorithm for the optimization of a complex reservoir system in Tunisia. Water Resour Manag 25(10):2387–2404

    Article  Google Scholar 

  • Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366

    Article  Google Scholar 

  • Ming B, Chang JX, Huang Q, Wang YM, Huang SZ (2015) Optimal operation of multi-reservoir system based-on cuckoo search algorithm. Water Resour Manag 29(15):5671–5687

    Article  Google Scholar 

  • Moosavian SAA, Ghaffari A, Salimi A (2010) Sequential quadratic programming and analytic hierarchy process for nonlinear multiobjective optimization of a hydropower network. Optim Contr Appl Meth 31(4):351–364

    Article  Google Scholar 

  • Oliveira R, Loucks DP (1997) Operating rules for multireservoir systems. Water Resour Res 33(4):839–852

    Article  Google Scholar 

  • Roy GG, Das S, Chakraborty P, Suganthan PN (2011) Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm. IEEE Trans Antennas Propag 59(1):110–118

    Article  Google Scholar 

  • Saravanan B, Vasudevan ER, Kothari DP (2014) Unit commitment problem solution using invasive weed optimization algorithm. Int J Electr Power Energy Syst 55:21–28

    Article  Google Scholar 

  • Teegavarapu RS, Simonovic SP (2002) Optimal operation of reservoir systems using simulated annealing. Water Resour Manag 16(5):401–428

    Article  Google Scholar 

  • Tospornsampan J, Kita I, Ishii M, Kitamura Y (2005) Optimization of a multiple reservoir system using a simulated annealing--a case study in the Mae Klong system, Thailand. Paddy Water Environ 3(3):137–147

    Article  Google Scholar 

  • Wu JK, Guo ZZ, Qin LH, Ning L (2009) Successive linear programming based optimal scheduling of cascade hydropower station [J].Power System Technology, 8, 006

  • Yoo JH (2009) Maximization of hydropower generation through the application of a linear programming model. J Hydrol 376(1):182–187

    Article  Google Scholar 

  • York C, Goharian E, Burian S (2015) Impacts of large-scale Stormwater green infrastructure implementation and climate variability on receiving water response in the salt Lake City area. Am J Environ Sci 11(4):278–292. doi:10.3844/ajessp.2015.278.292

    Article  Google Scholar 

  • Zambelli MS, Luna I, Soares S (2009) Long-Term hydropower scheduling based on deterministic nonlinear optimization and annual inflow forecasting models. In PowerTech, 2009 I.E. Bucharest (pp. 1–8). IEEE

  • Zhang R, Zhou J, Ouyang S, Wang X, Zhang H (2013) Optimal operation of multi-reservoir system by multi-elite guide particle swarm optimization. Int J Electr Power Energy Syst 48:58–68

    Article  Google Scholar 

  • Zhao T, Zhao J, Yang D (2012) Improved dynamic programming for hydropower reservoir operation. J Water Resour Plan Manag 140(3):365–374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Azizipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizipour, M., Ghalenoei, V., Afshar, M.H. et al. Optimal Operation of Hydropower Reservoir Systems Using Weed Optimization Algorithm. Water Resour Manage 30, 3995–4009 (2016). https://doi.org/10.1007/s11269-016-1407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1407-6

Keywords