Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

BSBL-Based DOA and Polarization Estimation with Linear Spatially Separated Polarization Sensitive Array

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The problem of multiple incident signals’ direction of arrival (DOA) and polarization estimation with linear spatially separated polarization sensitive array (SS-PSA) is investigated in sparse Bayesian learning (SBL) framework. SS-PSA is widely studied due to its low mutual coupling compared with the spatially collocated polarization sensitive array. On the one hand, the sparse representation of data model of proposed array can be expressed skillfully as a block-sparse representation. On the other hand, block sparse Bayesian learning (BSBL) algorithm has excellent performance in recovering the block-sparse signals. Therefore, in this paper, BSBL algorithm is extended to SS-PSA for DOA and polarization estimation. Firstly, a sparse representation model without parameters coupling is established, where the sparse coefficient vector is a block-sparse signal. Secondly, the expectation–maximization method in BSBL framework, i.e., BSBL-EM algorithm, is proposed to recover the block-sparse signal. Lastly, angles estimation can be obtained from the recovered sparse signal according to the intra-block correlation. Simulation results demonstrate that the BSBL-EM algorithm used in DOA and polarization estimation with SS-PSA exhibits better performance compared with Block Orthogonal Matching Pursuit algorithm and Group Basis Pursuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, J., & Compton, R. T. (1991). Angle and polarization estimation using ESPRIT with a polarization sensitive array. Transactions on Antennas and Propagation,39(9), 1376–1383.

    Article  Google Scholar 

  2. Li, J., & Compton, R. T. (1992). Two-dimensional angle and polarization estimation using the ESPRIT algorithm. Transactions on Antennas and Propagation,40(5), 550–555.

    Article  Google Scholar 

  3. Zoltowski, M. D., & Wong, K. T. (2000). ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors. IEEE Transactions on Signal Processing,48(8), 2195–2204.

    Article  Google Scholar 

  4. Bihan, N. L., Miron, S., & Albera, L. (2007). MUSIC algorithm for vector-sensors array using biquaternions. IEEE Transactions on Signal Processing,55(9), 4523–4533.

    Article  MathSciNet  Google Scholar 

  5. Chevalier, P., Ferréol, A., Albera, L., et al. (2007). Higher order direction finding from arrays with diversely polarized antennas: The PD-2q-MUSIC algorithms. IEEE Transactions on Signal Processing,55(11), 5337–5350.

    Article  MathSciNet  Google Scholar 

  6. Xu, Y., & Liu, Z. (2007). Polarimetric angular smoothing algorithm for an electromagnetic vector-sensor array. IET Radar, Sonar and Navigation,1(3), 230–240.

    Article  Google Scholar 

  7. Gong, X. F., Liu, Z. W., & Xu, Y. G. (2011). Coherent source localization: Bicomplex polarimetric smoothing with electromagnetic vector-sensors. IEEE Transactions on Aerospace and Electronic Systems,47(3), 2268–2285.

    Article  Google Scholar 

  8. He, J., Jiang, S., Wang, J., et al. (2010). Polarization difference smoothing for direction finding of coherent signals. IEEE Transactions on Aerospace and Electronic Systems,46(1), 469–480.

    Article  Google Scholar 

  9. Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory,52(4), 1289–1306.

    Article  MathSciNet  Google Scholar 

  10. Tian, Y., Sun, X., & Zhao, S. (2015). Sparse-reconstruction-based direction of arrival, polarization and power estimation using a cross-dipole array. IET Radar, Sonar and Navigation,9(6), 727–731.

    Article  Google Scholar 

  11. Zheng, G., & Zhang, D. (2017). BOMP-based angle estimation with polarimetric MIMO radar with spatially spread crossed-dipole. IET Signal Processing,12(1), 113–118.

    Article  MathSciNet  Google Scholar 

  12. Roemer, F., Ibrahim, M., & Alieiev, R. et al.: (2014). Polarimetric compressive sensing based DOA estimation. In International Itg workshop on smart antennas (pp. 1–8).

  13. Eldar, Y. C., Kuppinger, P., & Bolcskei, H. (2010). Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing,58(6), 3042–3054.

    Article  MathSciNet  Google Scholar 

  14. Baraniuk, R. G., Cevher, V., Duarte, M. F., et al. (2010). Model-based compressive sensing. IEEE Transactions on Information Theory,56(4), 1982–2001.

    Article  MathSciNet  Google Scholar 

  15. Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society,68, 49–67.

    Article  MathSciNet  Google Scholar 

  16. Berg, E. V. D., & Friedlander, M. (2008). Probing the Pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing,31(2), 890–912.

    Article  MathSciNet  Google Scholar 

  17. Eldar, Y. C., & Mishali, M. (2009). Robust recovery of signals from a structured union of subspaces. IEEE Transactions on Information Theory,55(11), 5302–5316.

    Article  MathSciNet  Google Scholar 

  18. Zhang, Z., & Rao, B. D. (2013). Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Transactions on Signal Processing,61(8), 2009–2015.

    Article  Google Scholar 

  19. Zhang, Z., & Rao, B. D. (2011). Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE Journal of Selected Topics in Signal Processing,5(5), 912–926.

    Article  Google Scholar 

  20. Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing,53(8), 3010–3022.

    Article  MathSciNet  Google Scholar 

  21. Panahi, A., & Viberg, M. (2011). On the resolution of the LASSO-based DOA estimation method. In International ITG workshop on smart antennas (WSA) (pp. 1–5).

  22. Zheng, J., Kaveh, M., & Tsuji, H. (2009). Sparse spectral fitting for direction of arrival and power estimation. In IEEE/SP 15th workshop on statistical signal processing, (SSP ‘09) (pp. 429–432).

  23. Zhang, Z., & Rao, B. D. (2012). Recovery of block sparse signals using the framework of block sparse Bayesian learning. IEEE International Conference on Acoustics,22(10), 3345–3348.

    Google Scholar 

  24. Zheng, G., Wu, B., Ma, Y., et al. (2014). Direction of arrival estimation with a sparse uniform array of orthogonally oriented and spatially separated dipole-triads. IET Radar, Sonar and Navigation,8(8), 885–894.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61501504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guimei Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Bai, W., Zheng, G. et al. BSBL-Based DOA and Polarization Estimation with Linear Spatially Separated Polarization Sensitive Array. Wireless Pers Commun 109, 2051–2065 (2019). https://doi.org/10.1007/s11277-019-06667-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06667-6

Keywords