Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Evaluation of UAV Path Following and Collision Avoidance Using NFMGOA Control Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Unmanned aerial vehicle (UAV) path following issue is a significant part of the UAV mission arranging framework, which needs to get an ideal way following and handle collision avoidance instantaneously. To resolve this issue, a hybrid algorithm termed NFMGOA is presented by combining the neuro-fuzzy and modified grasshopper optimization algorithm (NFMGOA). In the proposed work, unlike regularly utilized strategies, the consequent parameters of the neuro-fuzzy are updated by utilizing the modified grasshopper optimization algorithm for efficient collision avoidance. Furthermore, possible collisions must be recognized and automatically settled as the vehicle moves toward the way. Emergency avoidance is designed by autonomously changing the heading and speed of every UAV. Initially, the position of the obstacle is attained by Kalman filtering, the input UAV data. Subsequently, cooperative path flow is produced by the Lyapunov function. Finally, effective NFMGOA is utilized for better collision avoidance. The examining outcomes of single and multiple UAVs demonstrated that the presented technique outperforms the existing methodologies regarding convergence and execution time performance assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Motlagh, N. H., Taleb, T., & Arouk, O. (2016). Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives. IEEE Internet of Things Journal, 3(6), 899–922.

    Article  Google Scholar 

  2. Gandolfo, D. C., Salinas, L. R., Brandão, A. S., & Toibero, J. M. (2016). Path following for unmanned helicopter: An approach on energy autonomy improvement. Inf. Technol. Control., 45(1), 86–98.

    Google Scholar 

  3. Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering and Remote Sensing, 81(4), 281–330.

    Article  Google Scholar 

  4. Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., & Mohammed, F. (2020). Unmanned aerial vehicles applications in future smart cities. Technological Forecasting and Social Change, 153, 119293.

    Article  Google Scholar 

  5. Pádua, L., Vanko, J., Hruška, J., Adão, T., Sousa, J. J., Peres, E., & Morais, R. (2017). UAS, sensors, and data processing in agroforestry: A review towards practical applications. International Journal of Remote Sensing, 38(8–10), 2349–2391.

    Article  Google Scholar 

  6. Tjernberg, I., Lindberg, J., & Hansson, K. (2011). Cooperative networked control of unmanned air vehicles. Bachelor’s Degree Project, Dept. Electr. Eng., KTH Roy. Inst. Technol., Stockholm, Sweden.

  7. Fernandez Galarreta, J., Kerle, N., & Gerke, M. (2015). UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning. Natural Hazards and Earth System Sciences, 15(6), 1087–1101.

    Article  Google Scholar 

  8. Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2011). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(1), C22.

    Google Scholar 

  9. Oliveira, T., Aguiar, A. P., & Encarnacao, P. (2016). Moving path following for unmanned aerial vehicles with applications to single and multiple target tracking problems. IEEE Transactions on Robotics, 32(5), 1062–1078.

    Article  Google Scholar 

  10. Yu, X., & Zhang, Y. (2015). Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects. Progress in Aerospace Sciences, 74, 152–166.

    Article  Google Scholar 

  11. Shakeri, R., Al-Garadi, M. A., Badawy, A., Mohamed, A., Khattab, T., Al-Ali, A. K., Harras, K. A., & Guizani, M. (2019). Design challenges of multi-UAV systems in cyber-physical applications: A comprehensive survey and future directions. IEEE Communications Surveys and Tutorials, 21(4), 3340–3385.

    Article  Google Scholar 

  12. Wilhelm, J. P., & Clem, G. (2019). Vector field UAV guidance for path following and obstacle avoidance with minimal deviation. Journal of Guidance, Control, and Dynamics, 42(8), 1848–1856.

    Article  Google Scholar 

  13. Menouar, H., Guvenc, I., Akkaya, K., Uluagac, A. S., Kadri, A., & Tuncer, A. (2017). UAV-enabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Communications Magazine, 55(3), 22–28.

    Article  Google Scholar 

  14. Liu, Y., & Bucknall, R. (2018). A survey of formation control and motion planning of multiple unmanned vehicles. Robotica, 36(7), 1019–1047.

    Article  Google Scholar 

  15. Sujit, P. B., Saripalli, S., & Sousa, J. B. (2014). Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicless. IEEE Control Systems Magazine, 34(1), 42–59.

    Article  MathSciNet  Google Scholar 

  16. Rubi, B., Pérez, R., & Morcego, B. (2020). A survey of path following control strategies for UAVs focused on quadrotors. Journal of Intelligent and Robotic Systems, 98(2), 241–265.

    Article  Google Scholar 

  17. Ratnoo, A., Sujit, P. B., & Kothari, M. (2011). Adaptive optimal path following for high wind flights. IFAC Proceedings Volumes, 44(1), 12985–12990.

    Article  Google Scholar 

  18. Sujit, P. B., Saripalli, S., & Sousa, J. B. (2013). An evaluation of UAV path following algorithms. In 2013 European Control Conference (ECC) (pp. 3332-3337). IEEE.

  19. Li, K., Ge, F., Han, Y., & Xu, W. (2020). Path planning of multiple UAVs with online changing tasks by an ORPFOA algorithm. Engineering Applications of Artificial Intelligence, 94, 103807.

    Article  Google Scholar 

  20. Yu, X., Li, C., & Zhou, J. (2020). A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios. Knowledge-Based Systems, 204, 106209.

    Article  Google Scholar 

  21. Liao, S. L., Zhu, R. M., Wu, N. Q., Shaikh, T. A., Sharaf, M., & Mostafa, A. M. (2020). Path planning for moving target tracking by fixed-wing UAV. Defence Technology, 16(4), 811–824.

    Article  Google Scholar 

  22. Radmanesh, R., Kumar, M., French, D., & Casbeer, D. (2020). Towards a PDE-based large-scale decentralized solution for path planning of UAVs in shared airspace. Aerospace Science and Technology, 105, 105965.

    Article  Google Scholar 

  23. Qu, C., Gai, W., Zhong, M., & Zhang, J. (2020). A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning. Applied Soft Computing, 89, 106099.

    Article  Google Scholar 

  24. Qu, C., Gai, W., Zhang, J., & Zhong, M. (2020). A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowledge-Based Systems, 194, 105530.

    Article  Google Scholar 

  25. Harifi, S., Khalilian, M., Mohammadzadeh, J., & Ebrahimnejad, S. (2020). Optimizing a neuro-fuzzy system based on nature-inspired emperor penguins colony optimization algorithm. IEEE Transactions on Fuzzy Systems, 28(6), 1110–1124.

    Article  Google Scholar 

  26. Zhao, S., Wang, X., Chen, H., & Wang, Y. (2020). Cooperative path following control of fixed-wing unmanned aerial vehicles with collision avoidance. Journal of Intelligent and Robotic Systems, 100(3), 1569–1581.

    Article  Google Scholar 

  27. Sary, I. P., Nugraha, Y. P., Megayanti, M., Hidayat, E., & Trilaksono, B. R. (2018). Design of obstacle avoidance system on hexacopter using vector field histogram-plus. In 2018 IEEE 8th International Conference on System Engineering and Technology (ICSET) (pp. 18-23). IEEE.

  28. Neelima, P., & Rama Mohan Reddy, A. (2019). Hybrid algorithm using the advantage of krill herd algorithm with opposition-based learning for dynamic resource allocation in cloud environment. International Journal of Engineering and Advanced Technology, 8(6S), 306–311.

    Article  Google Scholar 

  29. Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application. Advances in Engineering Software, 105, 30–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritika Thusoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thusoo, R., Jain, S. & Bangia, S. An Evaluation of UAV Path Following and Collision Avoidance Using NFMGOA Control Algorithm. Wireless Pers Commun 122, 1247–1266 (2022). https://doi.org/10.1007/s11277-021-08947-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08947-6

Keywords