Abstract
With the growing prosperity of the Web service economy, more and more mashups have been developed that combine multiple Web APIs to achieve more powerful functionalities to accommodate complex business requirements. Consequently, mashup tagging has become an emerging task that is essential for managing and retrieving enormous service resources. Most of the existing mashup tagging methods are limited in several critical aspects such as the lack of explicit modeling for high-order connectivity, the neglect of discriminating the different importance of neighbors related to mashups adaptively, and achieving less desirable performance. To address the above limitations, in this paper, we propose a Context-Aware method to learn invocations patterns and descriptions for Mashup Tagging, named CAMT. Specifically, we explicitly model the high-order connectivity with two-graph evolution patterns (including the mashup-API-tag graph and the mashup-API-word graph) based on a graph neural network, and recursively propagating embeddings from neighbors of the target node to update its representation. Finally, a multi-head attention mechanism is exploited to discriminate the importance of neighbors adaptively. Comprehensive experiments on the real-world dataset demonstrate the effectiveness of CAMT when compared with many state-of-the-art baselines. For example, we achieve 10.7/9.6/12.7/9.0% gains in terms of P@5 / R@5 / MRR@5 / NDCG@5 metrics for mashup tagging, respectively. In addition, our model can achieve not only higher accuracy but also higher diversity and lower computational overhead.








Similar content being viewed by others
Notes
http://www.nltk.org/
https://pytorch.org/
References
Agarwal, D.K., Chen, B.C.: Statistical methods for recommender systems (2016)
Badsha, S., Yi, X., Khalil, I., Liu, D., Nepal, S., Bertino, E., Lam, K.: Privacy preserving location-aware personalized web service recommendations. IEEE Trans. Serv. Comput. 14(3), 791–804 (2021). https://doi.org/10.1109/TSC.2018.2839587
Bouguettaya, A., Singh, M.P., Huhns, M.N., Sheng, Q.Z., Dong, H., Yu, Q., Neiat, A.G., Mistry, S., Benatallah, B., Medjahed, B., Ouzzani, M., Casati, F., Liu, X., Wang, H., Georgakopoulos, D., Chen, L., Nepal, S., Malik, Z., Erradi, A., Wang, Y., Blake, M.B., Dustdar, S., Leymann, F., Papazoglou, M.P.: A service computing manifesto: the next 10 years. Commun. ACM 60(4), 64–72 (2017). https://doi.org/10.1145/2983528
Cao, B., Liu, X.F., Liu, J., Tang, M.: Domain-aware mashup service clustering based on LDA topic model from multiple data sources. Inf. Softw. Technol. 90, 40–54 (2017). https://doi.org/10.1016/j.infsof.2017.05.001
Cao, Y., Liu, J., Cao, B., Shi, M., Wen, Y., Peng, Z.: Web services classification with topical attention based bi-lstm. In: X. Wang, H. Gao, M. Iqbal, G. Min (eds.) Collaborative Computing: Networking, Applications and Worksharing - 15th EAI International Conference, CollaborateCom 2019, London, UK, August 19-22, 2019, Proceedings, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. 292, 394–407 (2019). Springer. https://doi.org/10.1007/978-3-030-30146-0_27
Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.: Attentive collaborative filtering: Multimedia recommendation with item- and component-level attention. In: N. Kando, T. Sakai, H. Joho, H. Li, A.P. de Vries, R.W. White (eds.) Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017, pp. 335–344. ACM (2017). https://doi.org/10.1145/3077136.3080797
Chen, Z., Shen, L., Li, F., You, D., Mapetu, J.P.B.: Web service qos prediction: when collaborative filtering meets data fluctuating in big-range. World Wide Web 23(3), 1715–1740 (2020). https://doi.org/10.1007/s11280-020-00787-x
Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). In: Y. Bengio, Y. LeCun (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016). http://arxiv.org/abs/1511.07289
Craswell, N.: Mean reciprocal rank. In: L. Liu, M.T. Özsu (eds.) Encyclopedia of Database Systems, p. 1703. Springer US (2009). https://doi.org/10.1007/978-0-387-39940-9_488
Ding, L., Kang, G., Liu, J., Xiao, Y., Cao, B.: Qos prediction for web services via combining multi-component graph convolutional collaborative filtering and deep factorization machine. In: C.K. Chang, E. Daminai, J. Fan, P. Ghodous, M. Maximilien, Z. Wang, R. Ward, J. Zhang (eds.) 2021 IEEE International Conference on Web Services, ICWS 2021, Chicago, IL, USA, September 5-10, 2021, pp. 551–559. IEEE (2021). https://doi.org/10.1109/ICWS53863.2021.00076.
E, J., Cui, Y., Wang, P., Li, Z., Zhang, C.: Cocloud: Enabling efficient cross-cloud file collaboration based on inefficient web apis. IEEE Trans. Parallel Distributed Syst. 29(1), 56–69 (2018). https://doi.org/10.1109/TPDS.2017.2750161
Fan, X., Hu, Y., Zheng, Z., Wang, Y., Brézillon, P., Chen, W.: CASR-TSE: context-aware web services recommendation for modeling weighted temporal-spatial effectiveness. IEEE Trans. Serv. Comput. 14(1), 58–70 (2021). https://doi.org/10.1109/TSC.2017.2782793
Fang, L., Wang, L., Li, M., Zhao, J., Zou, Y., Shao, L.: Towards automatic tagging for web services. In: C.A. Goble, P.P. Chen, J. Zhang (eds.) 2012 IEEE 19th International Conference on Web Services, Honolulu, HI, USA, June 24-29, 2012, pp. 528–535. IEEE Computer Society (2012). https://doi.org/10.1109/ICWS.2012.99
Fletcher, K.K.: An attention model for mashup tag recommendation. In: Q. Wang, Y. Xia, S. Seshadri, L. Zhang (eds.) Services Computing - SCC 2020 - 17th International Conference, Held as Part of the Services Conference Federation, SCF 2020, Honolulu, HI, USA, September 18-20, 2020, Proceedings, Lecture Notes in Computer Science, vol. 12409, pp. 50–64. Springer (2020). https://doi.org/10.1007/978-3-030-59592-0_4
Haveliwala, T.H.: Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003). https://doi.org/10.1109/TKDE.2003.1208999
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Huang, K., Fan, Y., Tan, W.: An empirical study of programmable web: A network analysis on a service-mashup system. In: C.A. Goble, P.P. Chen, J. Zhang (eds.) 2012 IEEE 19th International Conference on Web Services, Honolulu, HI, USA, June 24-29, 2012, pp. 552–559. IEEE Computer Society (2012). https://doi.org/10.1109/ICWS.2012.32
Johnson, R., Zhang, T.: Effective use of word order for text categorization with convolutional neural networks. In: R. Mihalcea, J.Y. Chai, A. Sarkar (eds.) NAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June 5, 2015, pp. 103–112. The Association for Computational Linguistics (2015). https://doi.org/10.3115/v1/n15-1011
Kim, Y.: Convolutional neural networks for sentence classification. In: A. Moschitti, B. Pang, W. Daelemans (eds.) Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1746–1751. ACL (2014). https://doi.org/10.3115/v1/d14-1181
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/forum?id=SJU4ayYgl
Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative recommendation. In: J. Allan, J.A. Aslam, M. Sanderson, C. Zhai, J. Zobel (eds.) Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, Boston, MA, USA, July 19-23, 2009, pp. 195–202. ACM (2009). https://doi.org/10.1145/1571941.1571977
Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263
Li, C., Li, X., Ouyang, J.: Semi-supervised text classification with balanced deep representation distributions. In: C. Zong, F. Xia, W. Li, R. Navigli (eds.) Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6. Association for Computational Linguistics, 5044–5053 (2021). https://doi.org/10.18653/v1/2021.acl-long.391
Li, J., Wu, H., Chen, J., He, Q., Hsu, C.: Topology-aware neural model for highly accurate qos prediction. IEEE Trans. Parallel Distributed Syst. 33(7), 1538–1552 (2022). https://doi.org/10.1109/TPDS.2021.3116865
Li, S., Luo, H., Zhao, G., Tang, M., Liu, X.: bi-directional bayesian probabilistic model based hybrid grained semantic matchmaking for web service discovery. World Wide Web 25(2), 445–470 (2022). https://doi.org/10.1007/s11280-022-01004-7
Li, Y., Wang, Y.: A multi-label image classification algorithm based on attention model. In: 17th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2018, Singapore, Singapore, June 6-8, 2018, pp. 728–731. IEEE Computer Society (2018). https://doi.org/10.1109/ICIS.2018.8466472
Liang, T., Chen, L., Wu, J., Bouguettaya, A.: Exploiting heterogeneous information for tag recommendation in API management. In: S. Reiff-Marganiec (ed.) IEEE International Conference on Web Services, ICWS 2016, San Francisco, CA, USA, June 27 - July 2, 2016, pp. 436–443. IEEE Computer Society (2016). https://doi.org/10.1109/ICWS.2016.63
Liu, A., Shen, X., Li, Z., Liu, G., Xu, J., Zhao, L., Zheng, K., Shang, S.: Differential private collaborative web services qos prediction. World Wide Web 22(6), 2697–2720 (2019). https://doi.org/10.1007/s11280-018-0544-7
Liu, J., Chang, W., Wu, Y., Yang, Y.: Deep learning for extreme multi-label text classification. In: N. Kando, T. Sakai, H. Joho, H. Li, A.P. de Vries, R.W. White (eds.) Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017, pp. 115–124. ACM (2017). https://doi.org/10.1145/3077136.3080834.
Liu, J., Tian, Z., Liu, P., Jiang, J., Li, Z.: An approach of semantic web service classification based on naive bayes. In: J. Zhang, J.A. Miller, X. Xu (eds.) IEEE International Conference on Services Computing, SCC 2016, San Francisco, CA, USA, June 27 - July 2, 2016, pp. 356–362. IEEE Computer Society (2016). https://doi.org/10.1109/SCC.2016.53
Ma, Q., Yuan, C., Zhou, W., Hu, S.: Label-specific dual graph neural network for multi-label text classification. In: C. Zong, F. Xia, W. Li, R. Navigli (eds.) Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6. Association for Computational Linguistics, 3855–3864 (2021). https://doi.org/10.18653/v1/2021.acl-long.298
Maas, A.L.: Rectifier nonlinearities improve neural network acoustic models (2013)
Purohit, L., Kumar, S.: A classification based web service selection approach. IEEE Trans. Serv. Comput. 14(2), 315–328 (2021). https://doi.org/10.1109/TSC.2018.2805352
Qin, S., Wu, H., Nie, R., He, J.: Deep model with neighborhood-awareness for text tagging. Knowl. Based Syst. 196, 105750 (2020). https://doi.org/10.1016/j.knosys.2020.105750
Ren, L., Wang, W.: A granular svm-based method for top-n web services recommendation. IEEE Trans. Serv. Comput. 15(1), 457–469 (2022). https://doi.org/10.1109/TSC.2019.2950291
Rendle, S.: Factorization machines. In: G.I. Webb, B. Liu, C. Zhang, D. Gunopulos, X. Wu (eds.) ICDM 2010, The 10th IEEE International Conference on Data Mining, Sydney, Australia, 14-17 December 2010, pp. 995–1000. IEEE Computer Society (2010). https://doi.org/10.1109/ICDM.2010.127.
Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: V.Y. Shen, N. Saito, M.R. Lyu, M.E. Zurko (eds.) Proceedings of the Tenth International World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001, pp. 285–295. ACM (2001). https://doi.org/10.1145/371920.372071.
Sellami, S., Becha, H.: WSTP: web services tagging platform. In: A. Barros, D. Grigori, N.C. Narendra, H.K. Dam (eds.) Service-Oriented Computing - 13th International Conference, ICSOC 2015, Goa, India, November 16-19, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9435, pp. 486–490. Springer (2015). https://doi.org/10.1007/978-3-662-48616-0_35.
Shi, M., Liu, J., Zhou, D., Tang, M., Xie, F., Zhang, T.: A probabilistic topic model for mashup tag recommendation. In: S. Reiff-Marganiec (ed.) IEEE International Conference on Web Services, ICWS 2016, San Francisco, CA, USA, June 27 - July 2, 2016, pp. 444–451. IEEE Computer Society (2016). https://doi.org/10.1109/ICWS.2016.64.
Shi, M., Liu, J., Zhou, D., Tang, Y.: A topic-sensitive method for mashup tag recommendation utilizing multi-relational service data. IEEE Trans. Serv. Comput. 14(2), 342–355 (2021). https://doi.org/10.1109/TSC.2018.2805826
Shi, M., Tang, Y., Huang, Y., Lin, M.: Mashup tag completion with attention-based topic model. Serv. Oriented Comput. Appl. 15(1), 43–54 (2021). https://doi.org/10.1007/s11761-020-00302-0
Shi, M., Tang, Y., Liu, J.: TA-BLSTM: tag attention-based bidirectional long short-term memory for service recommendation in mashup creation. In: International Joint Conference on Neural Networks, IJCNN 2019 Budapest, Hungary, July 14-19, 2019, pp. 1–8. IEEE (2019). https://doi.org/10.1109/IJCNN.2019.8852438.
Shi, T., Ma, H., Chen, G., Hartmann, S.: Cost-effective web application replication and deployment in multi-cloud environment. IEEE Trans. Parallel Distributed Syst. 33(8), 1982–1995 (2022). https://doi.org/10.1109/TPDS.2021.3133884
Sun, C., Dai, H., Wang, G., Towey, D., Chen, T.Y., Cai, K.: Dynamic random testing of web services: A methodology and evaluation. IEEE Trans. Serv. Comput. 15(2), 736–751 (2022). https://doi.org/10.1109/TSC.2019.2960496
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: I. Guyon, U. von Luxburg, S. Bengio, H.M. Wallach, R. Fergus, S.V.N. Vishwanathan, R. Garnett (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017). https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. Accessed 14 July 2022
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net (2018). https://openreview.net/forum?id=rJXMpikCZ. Accessed 14 July 2022
Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: CNN-RNN: A unified framework for multi-label image classification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 2285–2294. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.251.
Wang, Q., Wu, W., Zhao, Y., Zhuang, Y., Wang, Y.: Combining label-wise attention and adversarial training for tag prediction of web services. In: C.K. Chang, E. Daminai, J. Fan, P. Ghodous, M. Maximilien, Z. Wang, R. Ward, J. Zhang (eds.) 2021 IEEE International Conference on Web Services, ICWS 2021, Chicago, IL, USA, September 5-10, 2021, pp. 358–363. IEEE (2021). https://doi.org/10.1109/ICWS53863.2021.00054.
Wang, X., Liu, J., Li, L., Chen, X., Liu, X., Wu, H.: Detecting and explaining self-admitted technical debts with attention-based neural networks. In: 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020, pp. 871–882. IEEE (2020). https://doi.org/10.1145/3324884.3416583.
Wang, X., Liu, J., Liu, X., Cui, X., Wu, H.: A novel dual-graph convolutional network based web service classification framework. In: 2020 IEEE International Conference on Web Services, ICWS 2020, Beijing, China, October 19-23, 2020, pp. 281–288. IEEE (2020). https://doi.org/10.1109/ICWS49710.2020.00043.
Wang, X., Liu, J., Liu, X., Cui, X., Wu, H.: A spatial and sequential combined method for web service classification. In: X. Wang, R. Zhang, Y. Lee, L. Sun, Y. Moon (eds.) Web and Big Data - 4th International Joint Conference, APWeb-WAIM 2020, Tianjin, China, September 18-20, 2020, Proceedings, Part I, Lecture Notes in Computer Science, vol. 12317, pp. 764–778. Springer (2020). https://doi.org/10.1007/978-3-030-60259-8_56.
Wang, X., Liu, X., Li, L., Chen, X., Liu, J., Wu, H.: Time-aware user modeling with check-in time prediction for next POI recommendation. In: C.K. Chang, E. Daminai, J. Fan, P. Ghodous, M. Maximilien, Z. Wang, R. Ward, J. Zhang (eds.) 2021 IEEE International Conference on Web Services, ICWS 2021, Chicago, IL, USA, September 5-10, 2021, pp. 125–134. IEEE (2021). https://doi.org/10.1109/ICWS53863.2021.00028.
Wang, X., Liu, X., Liu, J., Chen, X., Wu, H.: A novel knowledge graph embedding based API recommendation method for mashup development. World Wide Web 24(3), 869–894 (2021). https://doi.org/10.1007/s11280-021-00894-3
Wang, X., Liu, X., Liu, J., Wu, H.: Relational graph neural network with neighbor interactions for bundle recommendation service. In: C.K. Chang, E. Daminai, J. Fan, P. Ghodous, M. Maximilien, Z. Wang, R. Ward, J. Zhang (eds.) 2021 IEEE International Conference on Web Services, ICWS 2021, Chicago, IL, USA, September 5-10, 2021, pp. 167–172. IEEE (2021). https://doi.org/10.1109/ICWS53863.2021.00033.
Wang, X., Wang, Y., Mi, F., Zhou, P., Wan, Y., Liu, X., Li, L., Wu, H., Liu, J., Jiang, X.: Syncobert: Syntax-guided multi-modal contrastive pre-training for code representation (2021)
Wang, X., Wang, Y., Wan, Y., Wang, J., Zhou, P., Li, L., Wu, H., Liu, J.: CODE-MVP: learning to represent source code from multiple views with contrastive pre-training. CoRR abs/2205.02029 (2022). https://doi.org/10.48550/arXiv.2205.02029.
Wang, X., Wu, H., Hsu, C.: Mashup-oriented API recommendation via random walk on knowledge graph. IEEE Access 7, 7651–7662 (2019). https://doi.org/10.1109/ACCESS.2018.2890156
Wang, X., Zhou, P., Wang, Y., Liu, X., Liu, J., Wu, H.: Servicebert: A pre-trained model for web service tagging and recommendation. In: H. Hacid, O. Kao, M. Mecella, N. Moha, H. Paik (eds.) Service-Oriented Computing - 19th International Conference, ICSOC 2021, Virtual Event, November 22-25, 2021, Proceedings, Lecture Notes in Computer Science, vol. 13121, pp. 464–478. Springer (2021). https://doi.org/10.1007/978-3-030-91431-8_29.
Weston, J., Chopra, S., Adams, K.: #tagspace: Semantic embeddings from hashtags. In: A. Moschitti, B. Pang, W. Daelemans (eds.) Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1822–1827. ACL (2014). https://doi.org/10.3115/v1/d14-1194.
Wu, H., Duan, Y., Yue, K., Zhang, L.: Mashup-oriented web api recommendation via multi-model fusion and multi-task learning. IEEE Transactions on Services Computing (2021)
Wu, H., Zhou, Q., Nie, R., Cao, J.: Effective metric learning with co-occurrence embedding for collaborative recommendations. Neural Networks 124, 308–318 (2020). https://doi.org/10.1016/j.neunet.2020.01.021
Yang, Y., Ke, W., Wang, W., Zhao, Y.: Deep learning for web services classification. In: E. Bertino, C.K. Chang, P. Chen, E. Damiani, M. Goul, K. Oyama (eds.) 2019 IEEE International Conference on Web Services, ICWS 2019, Milan, Italy, July 8-13, 2019, pp. 440–442. IEEE (2019). https://doi.org/10.1109/ICWS.2019.00079.
Yang, Z., Liu, G.: Hierarchical sequence-to-sequence model for multi-label text classification. IEEE Access 7, 153012–153020 (2019). https://doi.org/10.1109/ACCESS.2019.2948855
Yao, L., Wang, X., Sheng, Q.Z., Benatallah, B., Huang, C.: Mashup recommendation by regularizing matrix factorization with API co-invocations. IEEE Trans. Serv. Comput. 14(2), 502–515 (2021). https://doi.org/10.1109/TSC.2018.2803171
Ye, H., Cao, B., Peng, Z., Chen, T., Wen, Y., Liu, J.: Web services classification based on wide & bi-lstm model. IEEE Access 7, 43697–43706 (2019). https://doi.org/10.1109/ACCESS.2019.2907546
Yu, D., Zhang, L., Liu, C., Zhou, R., Xu, D.: Automatic web service composition driven by keyword query. World Wide Web 23(3), 1665–1692 (2020). https://doi.org/10.1007/s11280-019-00742-5
Yu, F., Cui, L., Guo, W., Lu, X., Li, Q., Lu, H.: A category-aware deep model for successive POI recommendation on sparse check-in data. In: Y. Huang, I. King, T. Liu, M. van Steen (eds.) WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, pp. 1264–1274. ACM / IW3C2 (2020). https://doi.org/10.1145/3366423.3380202.
Yu, J., Zhao, K., Liu, J., Liu, X., Xu, Z., Wang, X.: Exploiting gated graph neural network for detecting and explaining self-admitted technical debts. J. Syst. Softw. 187, 111219 (2022). https://doi.org/10.1016/j.jss.2022.111219
Zhang, D., Wen, S., Chen, F., Li, Z., Zhao, L.: Spatial crowdsourcing based on web mapping services. World Wide Web 23(1), 631–648 (2020). https://doi.org/10.1007/s11280-019-00708-7
Zhang, J., Chen, Y., Yang, Y., Lei, C., Wang, D.: Servenet-lt: A normalized multi-head deep neural network for long-tailed web services classification. In: C.K. Chang, E. Daminai, J. Fan, P. Ghodous, M. Maximilien, Z. Wang, R. Ward, J. Zhang (eds.) 2021 IEEE International Conference on Web Services, ICWS 2021, Chicago, IL, USA, September 5-10, 2021, pp. 97–106. IEEE (2021). https://doi.org/10.1109/ICWS53863.2021.00025.
Zhang, L., Sun, Z., Zhang, J., Lei, Y., Li, C., Wu, Z., Kloeden, H., Klanner, F.: An interactive multi-task learning framework for next POI recommendation with uncertain check-ins. In: C. Bessiere (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 3551–3557. ijcai.org (2020). https://doi.org/10.24963/ijcai.2020/491.
Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: A survey and new perspectives. ACM Comput. Surv. 52(1), 5:1–5:38 (2019). https://doi.org/10.1145/3285029.
Zhang, Z., Wang, Z., Li, X., Liu, N., Guo, B., Yu, Z.: Modalnet: an aspect-level sentiment classification model by exploring multimodal data with fusion discriminant attentional network. World Wide Web 24(6), 1957–1974 (2021). https://doi.org/10.1007/s11280-021-00955-7
Zhao, H., Wang, J., Zhou, Q., Wang, X., Wu, H.: Web API recommendation with features ensemble and learning-to-rank. In: H. Jin, X. Lin, X. Cheng, X. Shi, N. Xiao, Y. Huang (eds.) Big Data - 7th CCF Conference, BigData 2019, Wuhan, China, September 26-28, 2019, Proceedings, Communications in Computer and Information Science, vol. 1120, pp. 406–419. Springer (2019). https://doi.org/10.1007/978-981-15-1899-7_29.
Zhao, K., Liu, J., Xu, Z., Liu, X., Xue, L., Xie, Z., Zhou, Y., Wang, X.: Graph4web: A relation-aware graph attention network for web service classification. Journal of Systems and Software 190, 111324 (2022). https://doi.org/10.1007/978-981-15-1899-729
Zhou, P., Liu, J., Liu, X., Yang, Z., Grundy, J.C.: Is deep learning better than traditional approaches in tag recommendation for software information sites? Inf. Softw. Technol. 109, 1–13 (2019). https://doi.org/10.1016/j.infsof.2019.01.002
Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grant No. 61972290. This work is also supported by the National Natural Science Foundation of China under Grant No. 61962061, and partially supported by the Yunnan Provincial Foundation for Leaders of Disciplines in Science and Technology (202005AC160005).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare that they have no conflict of interest.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, X., Liu, X., Wu, H. et al. Jointly learning invocations and descriptions for context-aware mashup tagging with graph attention network. World Wide Web 26, 1295–1322 (2023). https://doi.org/10.1007/s11280-022-01087-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11280-022-01087-2