Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Adaptive fuzzy sliding mode control for robust trajectory tracking control of an autonomous underwater vehicle

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

In this study, a robust and adaptive tracking control is designed for a complete nonlinear model of an autonomous underwater vehicle. The tracking control is accomplished by proposing an adaptive fuzzy sliding mode control (AFSMC) scheme. Firstly, the fuzzy control rules are derived using the Lyapunov energy function to minimize the chattering in the control signal, which is commonly appeared in conventional sliding mode control. Furthermore, an adaptive control law is obtained to adapt the fuzzy consequent parameter of a fuzzy logic controller which enhances the stability of the whole system. Simulations were carried out under different sets of reference trajectories to test the potency of the AFSMC. The proposed method not only eliminates the problem of chattering but also reduces the steady-state errors in tracking control. In addition, due to adaptive control law, the proposed AFSMC is effective in adapting the unknown lumped uncertainty acting on the vehicle dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kim J, Joe H, Yu S, Lee JS, Kim M (2016) Time-delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Trans Ind Electron 63(2):1052–1061

    Article  Google Scholar 

  2. Londhe PS, Dhadekar DD, Patre BM, Waghmare LM (2017) Non-singular terminal sliding mode control for robust trajectory tracking control of an autonomous underwater vehicle. In: 2017 Indian control conference (ICC), pp 443–449. https://doi.org/10.1109/INDIANCC.2017.7846515

  3. Myint M, Yonemori K, Lwin KN, Yanou A, Minami M (2017) Dual-eyes vision-based docking system for autonomous underwater vehicle: an approach and experiments. J Intell Robot Syst 92(1):159–186

    Article  Google Scholar 

  4. Jalving B (1994) The NDRE-AUV flight control system. IEEE J Ocean Eng 19(4):497–501

    Article  Google Scholar 

  5. Herman P (2009) Decoupled PD set-point controller for underwater vehicles. Ocean Eng 36(6–7):529–534

    Article  Google Scholar 

  6. Miyamaoto S, Aoki T, Maeda T, Hirokawa K, Ichikawa T, Saitou T, Kobayashi H, Kobayashi E, Iwasaki S (2001) Maneuvering control system design for autonomous underwater vehicle. In: MTS/IEEE oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295). Institute of Electrical and Electronics Engineers (IEEE)

  7. Kim M, Joe H, Pyo J, Kim J, Kim H, Yu SC (2013) Variable-structure PID controller with anti-windup for autonomous underwater vehicle. In: 2013 OCEANS—San Diego, pp 1–5

  8. Feng Z, Allen R (2002) Autopilot design for an autonomous underwater vehicle. In: Proceedings of the international conference on control applications, vol 1, pp 350–354

  9. Roy S, Nandy S, Shome SN, Ray R (2013) Robust position control of an autonomous underwater vehicle: a comparative study. In: 2013 IEEE international conference on automation science and engineering (CASE), pp 1002–1007

  10. Utkin V (1977) Variable structure systems with sliding modes. IEEE Trans Autom Control 22(2):212–222

    Article  MathSciNet  MATH  Google Scholar 

  11. Young KD, Utkin VI, Ozguner U (1999) A control engineer’s guide to sliding mode control. IEEE Trans Control Syst Technol 7(3):328–342

    Article  Google Scholar 

  12. Yoerger D, Slotine J (1985) Robust trajectory control of underwater vehicles. IEEE J Ocean Eng 10(4):462–470

    Article  Google Scholar 

  13. Yoerger DR, Slotine JJE (1991) Adaptive sliding control of an experimental underwater vehicle. In: Proceedings. 1991 IEEE international conference on robotics and automation. Institute of Electrical & Electronics Engineers (IEEE)

  14. Cristi R, Papoulias FA, Healey AJ (1990) Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE J Ocean Eng 15(3):152–160

    Article  Google Scholar 

  15. Healey AJ, Lienard D (1993) Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J Ocean Eng 18(3):327–339

    Article  Google Scholar 

  16. Rodrigues L, Tavares P, Prado M (1996) Sliding mode control of an AUV in the diving and steering planes. In: OCEANS ’96. MTS/IEEE. Prospects for the 21st century. Conference proceedings, vol 2, pp 576–583

  17. Salgado-Jimenez T, Jouvencel B (2003) Using a high order sliding modes for diving control a torpedo autonomous underwater vehicle. In: Oceans 2003. Celebrating the past...teaming toward the future (IEEE Cat. No. 03CH37492). Institute of Electrical & Electronics Engineers (IEEE)

  18. Liu Y, Geng Z (2013) Finite-time optimal formation tracking control of vehicles in horizontal plane. Nonlinear Dyn 76(1):481–495

    Article  MathSciNet  MATH  Google Scholar 

  19. Elmokadem T, Zribi M, Youcef-Toumi K (2015) Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn 84(2):1079–1091

    Article  MathSciNet  MATH  Google Scholar 

  20. Joe H, Kim M, Yu S (2014) Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn 78(1):183–196

    Article  Google Scholar 

  21. Kumar RP, Dasgupta A, Kumar CS, Kumar CS (2007) Robust trajectory control of underwater vehicles using time delay control law. Ocean Eng 34(5–6):842–849

    Article  Google Scholar 

  22. Chen M, Shi P, Lim C-C (2016) Adaptive neural fault-tolerant control of a 3-DOF model helicopter system. IEEE Trans Syst Man Cybern Syst 46(2):260–270

    Article  Google Scholar 

  23. He W, Dong Y, Sun C (2016) Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans Syst Man Cybern Syst 46(3):334–344

    Article  Google Scholar 

  24. Venugopal KP, Sudhakar R, Pandya AS (1992) On-line learning control of autonomous underwater vehicles using feedforward neural networks. IEEE J Ocean Eng 17(4):308–319

    Article  Google Scholar 

  25. Jagannathan S, Galan G (2003) One-layer neural-network controller with preprocessed inputs for autonomous underwater vehicles. IEEE Trans Veh Technol 52(5):1342–1355

    Article  Google Scholar 

  26. Ranganathan N, Patel MI, Sathyamurthy R (2001) An intelligent system for failure detection and control in an autonomous underwater vehicle. IEEE Trans Syst Man Cybern Part A Syst Hum 31(6):762–767

    Article  Google Scholar 

  27. Smith SM, Rae GJS, Anderson DT, Shein AM (1994) Fuzzy logic control of an autonomous underwater vehicle. Control Eng Pract 2(2):321–331

    Article  Google Scholar 

  28. Song F, Smith S (2001) Autonomous underwater vehicle control using fuzzy logic. In: Intelligent control systems using soft computing methodologies. Informa UK Limited

  29. Patre BM, Londhe PS, Nagarale RM (2015) Fuzzy sliding mode control for spatial control of large nuclear reactor. IEEE Trans Nucl Sci 62(5):2255–2265

    Article  Google Scholar 

  30. Kaynak O, Erbatur K, Ertugnrl M (2001) The fusion of computationally intelligent methodologies and sliding-mode control-a survey. IEEE Trans Ind Electron 48(1):4–17

    Article  Google Scholar 

  31. Sebastián E, Sotelo MA (2007) Adaptive fuzzy sliding mode controller for the kinematic variables of an underwater vehicle. J Intell Robot Syst 49(2):189–215

    Article  Google Scholar 

  32. Shahraz A, Boozarjomehry RB (2009) A fuzzy sliding mode control approach for nonlinear chemical processes. Control Eng Pract 17(5):541–550

    Article  Google Scholar 

  33. Liu Z, Wang F, Zhang Y (2015) Adaptive visual tracking control for manipulator with actuator fuzzy dead-zone constraint and unmodeled dynamic. IEEE Trans Syst Man Cybern Syst 45(10):1301–1312

    Article  Google Scholar 

  34. Song F, Smith SM (2000) Design of sliding mode fuzzy controllers for an autonomous underwater vehicle without system model. In: OCEANS 2000 MTS/IEEE conference and exhibition. Conference proceedings (Cat. No. 00CH37158). Institute of Electrical & Electronics Engineers (IEEE)

  35. Chiu FC, Guo J, Huang CC, Tsai WC (2000) Application of the sliding mode fuzzy controller to the guidance and control of an autonomous underwater vehicle. In: Proceedings of the 2000 international symposium on underwater technology (Cat. No. 00EX418). Institute of Electrical & Electronics Engineers (IEEE)

  36. Guo J, Chiu F-C, Huang C-C (2003) Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. Ocean Eng 30(16):2137–2155

    Article  Google Scholar 

  37. Balasuriya A, Cong Li (2003) Adaptive fuzzy sliding mode controller for underwater vehicles. In: The fourth international conference on control and automation, 2003. ICCA. Final program and book of abstracts. Institute of Electrical & Electronics Engineers (IEEE)

  38. Kim H-S, Shin Y-K (2007) Expanded adaptive fuzzy sliding mode controller using expert knowledge and fuzzy basis function expansion for UFV depth control. Ocean Eng 34(8–9):1080–1088

    Article  Google Scholar 

  39. Bessa WM, Dutra MS, Kreuzer E (2008) Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robot Auton Syst 56(8):670–677

    Article  Google Scholar 

  40. Bessa WM, Dutra MS, Kreuzer E (2010) An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles. Robot Auton Syst 58(1):16–26

    Article  Google Scholar 

  41. Xin S, Zaojian Z (2010) A fuzzy sliding mode controller with adaptive disturbance approximation for underwater robot. In: 2010 2nd international Asia conference on informatics in control, automation and robotics (CAR 2010). Institute of Electrical & Electronics Engineers (IEEE)

  42. Lakhekar GV, Waghmare LM, Londhe PS (2015) Enhanced dynamic fuzzy sliding mode controller for autonomous underwater vehicles. In: 2015 IEEE underwater technology (UT). Institute of Electrical & Electronics Engineers (IEEE)

  43. SNAME (1950) Nomenclature for treating the motion of a submerged body through a fluid. The society of naval architects and marine engineers, technical and research bulletin No. 1–5, pp 1–15

  44. Fossen TI (1994) Guidance and control of ocean vehicles. Wiley, New York

    Google Scholar 

  45. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  46. Ho HF, Wong YK, Rad AB (2009) Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems. Simul Model Pract Theory 17(7):1199–1210

    Article  Google Scholar 

  47. Narendra K, Annaswamy A (1987) A new adaptive law for robust adaptation without persistent excitation. IEEE Trans Autom Control 32(2):134–145

    Article  MathSciNet  MATH  Google Scholar 

  48. Chen FC (1991) A dead-zone approach in nonlinear adaptive control using neural networks. In: Proceedings of the 30th IEEE conference on decision and control. Institute of Electrical & Electronics Engineers (IEEE)

  49. Wang LX (1997) A course in fuzzy systems and control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  50. Guo Y, Woo P-Y (2003) An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE Trans Syst Man Cybern Part A Syst Hum 33(2):149–159

    Article  Google Scholar 

  51. Asokan T, Santhakumar M (2007) Mathematical modeling and simulation of autonomous underwater vehicle. Technical report, Department of Mechanical Engineering, IIT Madras

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Patre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londhe, P.S., Patre, B.M. Adaptive fuzzy sliding mode control for robust trajectory tracking control of an autonomous underwater vehicle. Intel Serv Robotics 12, 87–102 (2019). https://doi.org/10.1007/s11370-018-0263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-018-0263-z

Keywords