Abstract
Pulsar timing array (PTA) provides an excellent opportunity to detect the gravitational waves (GWs) in nanoHertz frequency band. In particular, due to the larger number of “arms” in PTA, it can be used to test gravity by probing the non-Einsteinian polarization modes of GWs, including two spin-1 shear modes labeled by “sn” and “se”, the spin-0 transverse mode labeled by “b” and the longitudinal mode labeled by “l”. In this paper, we investigate the capabilities of the current and potential future PTAs, which are quantified by the constraints on the amplitudes parameters (cb, csn, cse, cl), by observing an individual supermassive black hole binary in Virgo cluster. We find that for binary with total mass Mc = 8.77 × 108M⊙ and GW frequency f = 10−9 Hz, the PTA at current level can detect these GW modes if cb > 0.00106, cl > 0.00217, cse > 0.00271, csn > 0.00141, which will be improved by about two orders if considering the potential PTA in SKA era. Interesting enough, due to effects of the geometrical factors, we find that in SKA era, the constraints on the l, sn, se modes of GWs are purely dominated by several pulsars, instead of the full pulsars in PTA.
Similar content being viewed by others
References
C. M. Will, Liv. Rev. Relativ. 9, 3 (2006).
C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 2018).
X. Zhang, J. Yu, T. Liu, W. Zhao, and A. Wang, Phys. Rev. D 95, 124008 (2017), arXiv: 1703.09853.
T. Liu, X. Zhang, W. Zhao, K. Lin, C. Zhang, S. Zhang, X. Zhao, T. Zhu, and A. Wang, Phys. Rev. D 98, 083023 (2018), arXiv: 1806.05674.
B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837.
B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241103 (2016), arXiv: 1606.04855.
B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 118, 221101 (2017), arXiv: 1706.01812.
B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 141101 (2017), arXiv: 1709.09660.
B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.
B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. 851, L35 (2017), arXiv: 1711.05578.
J. Li, and X. L. Fan, Sci. China-Phys. Mech. Astron. 60, 120431 (2017).
H. Gao, Sci. China-Phys. Mech. Astron. 61, 059531 (2018).
M. V. Sazhin, Sov. Astron. 22, 36 (1978).
S. Detweiler, Astrophys. J. 234, 1100 (1979).
K. J. Lee, F. A. Jenet, and R. H. Price, Astrophys. J. 685, 1304 (2008).
M. Anholm, S. Ballmer, J. D. E. Creighton, L. R. Price, and X. Siemens, Phys. Rev. D 79, 084030 (2009), arXiv: 0809.0701.
D. Hansen, N. Yunes, and K. Yagi, Phys. Rev. D 91, 082003 (2015), arXiv: 1412.4132.
J. Simon, A. Polin, A. Lommen, B. Stappers, L. S. Finn, F. A. Jenet, and B. Christy, Astrophys. J. 784, 60 (2014), arXiv: 1402.1140.
X. J. Zhu, L. Wen, J. Xiong, Y. Xu, Y. Wang, S. D. Mohanty, G. Hobbs, and R. N. Manchester, Mon. Not. R. Astron. Soc. 461, 1317 (2016), arXiv: 1606.04539.
B. B. P. Perera, B. W. Stappers, S. Babak, M. J. Keith, J. Antoniadis, C. G. Bassa, R. N. Caballero, D. J. Champion, I. Cognard, G. Desvignes, E. Graikou, L. Guillemot, G. H. Janssen, R. Karuppusamy, M. Kramer, P. Lazarus, L. Lentati, K. Liu, A. G. Lyne, J. W. McKee, S. Osłowski, D. Perrodin, S. A. Sanidas, A. Sesana, G. Shaifullah, G. Theureau, J. P. W. Verbiest, and S. R. Taylor, Mon. Not. R. Astron. Soc. 478, 218 (2018), arXiv: 1804.10571.
R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, Astrophys. J. 129, 1993 (2005).
R. Smits, M. Kramer, B. Stappers, D. R. Lorimer, J. Cordes, and A. Faulkner, Astron. Astrophys. 493, 1161 (2009), arXiv: 0811.0211.
Y. Wang, and S. D. Mohanty, Phys. Rev. Lett. 118, 151104 (2017), arXiv: 1611.09440.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Niu, R., Zhao, W. Constraining the non-Einsteinian polarizations of gravitational waves by pulsar timing array. Sci. China Phys. Mech. Astron. 62, 970411 (2019). https://doi.org/10.1007/s11433-018-9340-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11433-018-9340-6