Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tunable Multi-Port Surface Plasmon Polariton Excitation with Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon polaritons (SPPs) have appealing features such as tighter spatial confinement and higher local field intensity. Manipulation of surface plasmon polaritons on metal/dielectric interface is an important aspect in the achievement of integrated plasmonic circuit beyond the diffraction limit. Here, we introduce a design of pin cushion structure and a holographic groove pattern structure for tunable multi-port SPPs excitation and focusing. Free space light is coupled into SPPs through momentum matching conditions. Both nanostructures are capable of tunably controlling of SPPs depending on the incident polarizations, while the holographic method provides more flexibility of wavelength-dependent excitations. Furthermore, a quantitative method is applied to calculate the efficiencies of excitation for both nanostructures under different conditions, including radially polarized incident beams. These results can work as a guidance and be helpful to further choice of the suitable design strategies for variable plasmonic applications such as beam splitter, on-chip spectroscopy, and plasmonic detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  3. Liu Z, Steele JM, Lee H, Zhang X (2006) Tuning the focus of a plasmonic lens by the incident angle. Appl Phys Lett 88:171108

    Article  Google Scholar 

  4. Sorger VJ, Oulton RF, Ma R, Zhang X (2012) Toward integrated plasmonic circuits. Mater Res Soc 37(08):728–738

    Article  CAS  Google Scholar 

  5. Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface-plasmon circuitry. Phys Today 5:44

    Article  Google Scholar 

  6. Li G, Zhang J (2014) Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period. Sci Rep 4:5914

    CAS  Google Scholar 

  7. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  8. Dahlin A, Zach M, Rindzevicius T, Kall M, Sutherland DS, Hook F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 127(14):5043–5048

    Article  CAS  Google Scholar 

  9. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):011101

    Article  Google Scholar 

  10. Faryad M, Lakhtakia A (2010) On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile. JOSA B 27(11):2218–2223

    Article  CAS  Google Scholar 

  11. Hooper IR, Sambles JR (2002) Dispersion of surface plasmon polaritons on short-pitch metal gratings. Phys Rev B 65(16):165432

    Article  Google Scholar 

  12. Laux E, Genet C, Skauli T, Ebbesen TW (2008) Plasmonic photon sorters for spectral and polarimetric imaging. Nat Photonics 2(3):161–164

    Article  CAS  Google Scholar 

  13. Koenderink AF (2009) Plasmon nanoparticle array waveguides for single photon and single plasmon sources. Nano Lett 9(12):4228–4233

    Article  CAS  Google Scholar 

  14. Li L, Li T, Wang SM, Zhu SN, Zhang X (2011) Broad band focusing and demultiplexing of in-plane propagating surface plasmons. Nano Lett 11(10):4357–4361

    Article  CAS  Google Scholar 

  15. Lu C, Hu X, Yang H, Gong Q (2014) Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits. Sci Rep 4:3869

    Google Scholar 

  16. Li X, Tan Q, Bai B, Jin G (2012) Tunable directional beaming assisted by asymmetrical SPP excitation in a subwavelength metallic double slit. Chin Opt Lett 10(5):052401

    Article  Google Scholar 

  17. Chen J, Li Z, Zhang X, Xiao J, Gong Q (2013) Submicron bidirectional all-optical plasmonic switched. Sci Rep 3:1451

    Google Scholar 

  18. Lin J, Mueller JP, Wang Q, Yuan G, Antoniou N, Yuan X, Capasso F (2013) Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340(6130):331–334

    Article  CAS  Google Scholar 

  19. Zhang W, Zhao C, Wang J, Zhang J (2009) An experimental study of the plasmonic Talbot effect. Opt Express 17(22):19757–19762

    Article  CAS  Google Scholar 

  20. Zhao C, Wang J, Wu X, Zhang J (2009) Focusing surface plasmons to multiple focal spots with a launching diffraction grating. Appl Phys Lett 94(11):111105

    Article  Google Scholar 

  21. Wintz D, Genevet P, Ambrosio A, Woolf A, Capasso F (2015) Holographic metalens for switchable focusing of surface plasmons. Nano Lett 15(5):3585–3589

    Article  CAS  Google Scholar 

  22. Liu Z, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5(9):1726–1729

    Article  CAS  Google Scholar 

  23. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  24. Bliokh KY, Gorodetski Y, Kleiner V, Hasman E (2008) Coriolis effect in optics: unified geometric phase and spin-Hall effect. Phys Rev Lett 101:030404

    Article  Google Scholar 

  25. Nesterov AV, Niziev VG (2000) Laser beam with axially symmetric polarization. J Phys D Appl Phys 33(15):1817–1822

    Article  CAS  Google Scholar 

  26. Chen Y, Fu J, Li Z (2011) Surface electromagnetic wave holography. Opt Express 19(24):23908–23920

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support by the National Natural Science Foundation of China (Projects No. 61505007). L.H. acknowledges the Excellent Young Scholars Research Fund of Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Huang, L. & Wang, Y. Tunable Multi-Port Surface Plasmon Polariton Excitation with Nanostructures. Plasmonics 11, 817–823 (2016). https://doi.org/10.1007/s11468-015-0114-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0114-0

Keywords