Abstract
The recent rapid development of deep learning has laid a milestone in industrial image anomaly detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the promising setting from industrial manufacturing and review the current IAD approaches under our proposed setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
T. Czimmermann, G. Ciuti, M. Milazzo, M. Chiurazzi, S. Roccella, C. M. Oddo, P. Dario. Visual-based defect detection and classification approaches for industrial applications–A survey. Sensors, vol.20, no.5, Article number 1459, 2020. DOI: https://doi.org/10.3390/s20051459.
X. Tao, X. Y. Gong, X. Zhang, S. H. Yan, C. Adak. Deep learning for unsupervised anomaly localization in industrial images: A survey. IEEE Transactions on Instrumentation and Measurement, vol.71, Article number 5018021, 2022. DOI: https://doi.org/10.1109/TIM.2022.3196436.
Y. J. Cui, Z. X. Liu, S. G. Lian. A survey on unsupervised industrial anomaly detection algorithms, [Online], Available: https://arxiv.org/abs/2204.11161, 2022.
Z. Y. You, L. Cui, Y. J. Shen, K. Yang, X. Lu, Y. Zheng, X. Y. Le. A unified model for multi-class anomaly detection. In Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022.
P. Bergmann, M. Fauser, D. Sattlegger, C. Steger. MVTec ad — a comprehensive real-world dataset for unsupervised anomaly detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, pp. 9584–9592, 2019. DOI: https://doi.org/10.1109/CVPR.2019.00982.
P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, C. Steger. Beyond dents and scratches: Logical constraints in unsupervised anomaly detection and localization. International Journal of Computer Vision, vol.130, no. 4, pp. 947–969, 2022. DOI: https://doi.org/10.1007/s11263-022-01578-9.
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, 2016. DOI: https://doi.org/10.1109/CVPR.2016.90.
K. Simonyan. A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015. DOI: https://doi.org/10.48550/arXiv.1409.1556.
M. X. Tan, Q. Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International conference on machine learning, Long Beach, USA, pp. 6105–6114, 2019.
P. Bergmann, M. Fauser, D. Sattlegger, C. Steger. Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, pp. 4182–4191, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00424.
M. Salehi, N. Sadjadi, S. Baselizadeh, M. H. Rohban, H. R. Rabiee. Multiresolution knowledge distillation for anomaly detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, pp. 14897–14907, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.01466.
G. D. Wang, S. M. Han, E. R. Ding, D. Huang. Student-teacher feature pyramid matching for anomaly detection. In Proceedings of 32nd British Machine Vision Conference 2021, 2021.
S. Yamada, K. Hotta. Reconstruction student with attention for student-teacher pyramid matching, [Online], Available: https://arxiv.org/abs/2111.15376, 2021.
H. Q. Deng, X. Y. Li. Anomaly detection via reverse distillation from one-class embedding. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, pp. 9727–9736, 2022. DOI: https://doi.org/10.1109/CVPR52688.2022.00951.
Y. K. Cao, Q. Wan, W. M. Shen, L. Gao. Informative knowledge distillation for image anomaly segmentation. Knowledge-based Systems, vol.248, Article number 108846, 2022. DOI: https://doi.org/10.1016/j.knosys.2022.108846.
M. Rudolph, T. Wehrbein, B. Rosenhahn, B. Wandt. Asymmetric student-teacher networks for industrial anomaly detection. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, pp. 2591–2601, 2023. DOI: https://doi.org/10.1109/WACV56688.2023.00262.
S. Yamada, S. Kamiya, K. Hotta. Reconstructed student-teacher and discriminative networks for anomaly detection. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyoto, Japan, pp. 2725–2732, 2022. DOI: https://doi.org/10.1109/IROS47612.2022.9981509.
M. H. Yang, P. Wu, J. Liu, H. Feng. MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities, [Online], Available: https://arxiv.org/abs/2205.00908, 2022.
J. H. Yi, S. Yoon. Patch SVDD: Patch-level svdd for anomaly detection and segmentation. In Proceedings of the 15th Asian Conference on Computer Vision, Kyoto, Japan, pp. 375–390, 2021. DOI: https://doi.org/10.1007/978-3-030-69544-6_23.
Z. Zhang, X. G. Deng. Anomaly detection using improved deep SVDD model with data structure preservation. Pattern Recognition Letters, vol. 148, pp. 1–6, 2021. DOI: https://doi.org/10.1016/j.patrec.2021.04.020.
C. F. Hu, K. Chen, H. Shao. A semantic-enhanced method based on deep SVDD for pixel-wise anomaly detection. In Proceedings of IEEE International Conference on Multimedia and Expo, Shenzhen, China, 2021. DOI: https://doi.org/10.1109/ICME51207.2021.9428370.
F. V. Massoli, F. Falchi, A. Kantarci, Ş. Akti, H. K. Ekenel, G. Amato. MOCCA: Multilayer one-class classification for anomaly detection. IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 6, pp. 2313–2323, 2022. DOI: https://doi.org/10.1109/TNNLS.2021.3130074.
D. Sauter, A. Schmitz, F. Dikici, H. Baumgartl, R. Buettner. Defect detection of metal nuts applying convolutional neural networks. In Proceedings of the 45th IEEE Annual Computers, Software, and Applications Conference, Madrid, Spain, pp. 248–257, 2021. DOI: https://doi.org/10.1109/COMPSAC51774.2021.00043.
F. Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 1800–1807, 2017. DOI: https://doi.org/10.1109/CVPR.2017.195.
T. Reiss, N. Cohen, L. Bergman, Y. Hoshen. PANDA: Adapting pretrained features for anomaly detection and segmentation. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, pp. 2805–2813, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.00283.
L. Bergman, N. Cohen, Y. Hoshen. Deep nearest neighbor anomaly detection, [Online], Available: https://arxiv.org/abs/2002.10445, 2020.
K. Sohn, C. L. Li, J. Yoon, M. Jin, T. Pfister. Learning and evaluating representations for deep one-class classification. In Proceedings of the 9th International Conference on Learning Representations, 2021.
X. L. Bai, Y. M. Fang, W. S. Lin, L. P. Wang, B. F. Ju. Saliency-based defect detection in industrial images by using phase spectrum. IEEE Transactions on Industrial Informatics, vol.10, no. 4, pp. 2135–2145, 2014. DOI: https://doi.org/10.1109/TII.2014.2359416.
M. H. Niu, K. C. Song, L. M. Huang, Q. Wang, Y. H. Yan, Q. G. Meng. Unsupervised saliency detection of rail surface defects using stereoscopic images. IEEE Transactions on Industrial Informatics, vol.17, no. 3, pp. 2271–2281, 2021. DOI: https://doi.org/10.1109/TII.2020.3004397.
Y. H. Qiu, L. X. Tang, B. Li, S. L. Niu, T. Z. Niu. Uneven illumination surface defects inspection based on saliency detection and intrinsic image decomposition. IEEE Access, vol.8, pp. 190663–190676, 2020. DOI: https://doi.org/10.1109/AC-CESS.2020.3032108.
C. L. Li, K. Sohn, J. Yoon, T. Pfister. CutPaste: Self-supervised learning for anomaly detection and localization. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, pp. 9659–9669, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.00954.
S. Yoa, S. Lee, C. Kim, H. J. Kim. Self-supervised learning for anomaly detection with dynamic local augmentation. IEEE Access, vol.9, pp. 147201–147211, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3124525.
P. de Haan, S. Löwe. Contrastive predictive coding for anomaly detection, [Online], Available: https://arxiv.org/abs/2107.07820, 2021.
D. M. J. Tax, R. P. W. Duin. Support vector data description. Machine Learning, vol.54, no. 1, pp.45–66, 2004. DOI: https://doi.org/10.1023/B:MACH.0000008084.60811.49.
P. Liznerski, L. Ruff, R. A. Vandermeulen, B. J. Franks, M. Kloft, K. R. Muller. Explainable deep one-class classification. In Proceedings of the 9th International Conference on Learning Representations, 2021.
T. Reiss, Y. Hoshen. Mean-shifted contrastive loss for anomaly detection, [Online], Available: https://arxiv.org/abs/2106.03844, 2021.
A. van den Oord, Y. Z. Li, O. Vinyals. Representation learning with contrastive predictive coding, [Online], Available: https://arxiv.org/abs/1807.03748, 2018.
D. W. Zhang, J. W. Han, Y. Zhang, D. Xu. Synthesizing supervision for learning deep saliency network without human annotation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.42, no. 7, pp. 1755–1769, 2020. DOI: https://doi.org/10.1109/TPAMI.2019.2900649.
M. C. Zhuge, D. P. Fan, N. Liu, D. W. Zhang, D. Xu, L. Shao. Salient object detection via integrity learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.45, no.3, pp.3738–3752, 2023. DOI: https://doi.org/10.1109/TPAMI.2022.3179526.
C. W. Fang, H. B. Tian, D. W. Zhang, Q. Zhang, J. G. Han, J. W. Han. Densely nested top-down flows for salient object detection. Science China Information Sciences, vol.65, no.8, Article number 182103, 2022. DOI: https://doi.org/10.1007/s11432-021-3384-y.
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, pp. 618–626, 2017. DOI: https://doi.org/10.1109/ICCV.2017.74.
S. Venkataramanan, K. C. Peng, R. V. Singh. A. Mahalanobis. Attention guided anomaly localization in images. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 485–503, 2020. DOI: https://doi.org/10.1007/978-3-030-58520-4_29.
A. S. Iquebal, S. T. Bukkapatnam. Consistent estimation of the max-flow problem: Towards unsupervised image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.44, no. 5, pp. 2346–2357, 2022. DOI: https://doi.org/10.1109/TPAMI.2020.3039745.
H. Attar, M. Calin, L. C. Zhang, S. Scudino, J. Eckert. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering: A, vol.593, pp. 170–177, 2014. DOI: https://doi.org/10.1016/j.msea.2013.11.038.
M. Tailanian, P. Musé, Á. Pardo. A multi-scale a contrario method for unsupervised image anomaly detection. In Proceedings of the 20th IEEE International Conference on Machine Learning and Applications, Pasadena, USA, pp. 179–184, 2021. DOI: https://doi.org/10.1109/ICMLA52953.2021.00035.
O. Rippel, P. Mertens, D. Merhof. Modeling the distribution of normal data in pre-trained deep features for anomaly detection. In Proceedings of the 25th International Conference on Pattern Recognition, Milan, Italy, pp. 6726–6733, 2021. DOI: https://doi.org/10.1109/ICPR48806.2021.9412109.
O. Rippel, A. Chavan, C. C. Lei, D. Merhof. Transfer learning gaussian anomaly detection by fine-tuning representations. In Proceedings of the 2nd International Conference on Image Processing and Vision Engineering, pp. 45–56, 2022. DOI: https://doi.org/10.5220/0011063900003209.
K. T. Zhang, B. Wang, C. C. J. Kuo. PEDENet: Image anomaly localization via patch embedding and density estimation. Pattern Recognition Letters, vol. 153, pp. 144–150, 2022. DOI: https://doi.org/10.1016/j.patrec.2021.11.030.
Q. Wan, L. Gao, X. Y. Li, L. Wen. Unsupervised image anomaly detection and segmentation based on pretrained feature mapping. IEEE Transactions on Industrial Informatics, vol. 19, no. 3, pp. 2330–2339, 2023. DOI: https://doi.org/10.1109/TII.2022.3182385.
Q. Wan, Y. K. Cao, L. Gao, W. M. Shen, X. Y. Li. Position encoding enhanced feature mapping for image anomaly detection. In Proceedings of the 18th IEEE International Conference on Automation Science and Engineering, Mexico City, Mexico, pp. 876–881, 2022. DOI: https://doi.org/10.1109/CASE49997.2022.9926547.
Y. Zheng, X. Wang, R. Deng, T. P. Bao, R. Zhao, L. W. Wu. Focus your distribution: Coarse-to-fine non-contrastive learning for anomaly detection and localization. In Proceedings of IEEE International Conference on Multimedia and Expo, Taipei, China, pp. 1–6, 2022. DOI: https://doi.org/10.1109/ICME52920.2022.9859925.
M. Rudolph, B. Wandt, B. Rosenhahn. Same same but DifferNet: Semi-supervised defect detection with normalizing flows. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, pp. 1906–1915, 2021. DOI: https://doi.org/10.1109/WACV48630.2021.00195.
M. Rudolph, T. Wehrbein, B. Rosenhahn, B. Wandt. Fully convolutional cross-scale-flows for image-based defeet detection. In Proceedings of lEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, pp. 1829–1838, 2022. DOI: https://doi.org/10.1109/WACV51458.2022.00189.
D. Gudovskiy, S. Ishizaka, K. Kozuka. CFLOW-AD: Real-time unsupervised anomaly detection with localization via conditional normalizing flows. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, pp. 1819–1828, 2022. DOI: https://doi.org/10.1109/WACV51458.2022.00188.
R. Q. Yan, F. Zhang, M. Y. Huang, W. Liu, D. Y. Hu, J. F. Li, Q. Liu, J. R. Jiang, Q. J. Guo, L. H. Zheng. CAIN-NFlow: Convolutional block attention modules and invertible neural networks flow for anomaly detection and localization tasks, [Online], Available: https://arxiv.org/abs/2206.01992, 2022.
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. H. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby. An image is worth 16×16 words: Transformers for image recognition at scale. In Proceedings of the 9th International Conference on Learning Representations, 2020.
J. W. Yu, Y. Zheng, X. Wang, W. Li, Y. S. Wu, R. Zhao, L. W. Wu. FastFlow: Unsupervised anomaly detection and localization via 2D normalizing flows, [Online], Available: https://arxiv.org/abs/2111.07677, 2021.
Y. Kim, H. Jang, D. Lee, H. J. Choi. AltUB: Alternating training method to update base distribution of normalizing flow for anomaly detection, [Online], Available: https://arxiv.org/abs/2210.14913, 2022.
D. J. Rezende, S. Mohamed. Variational inference with normalizing flows. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, pp.1530–1538, 2015.
Z. Liu, Y. T. Lin, Y. Cao, H. Hu, Y. X. Wei, Z. Zhang, S. Lin, B. N. Guo. Swin Transformer: Hierarchical vision transformer using shifted windows. In Proceedings of IEEE/CVF International Conference on Computer Vision, Montreal, Canada, pp. 9992–10002, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00986.
S. Woo, J. Park, J. Y. Lee, I. S. Kweon. CBAM: Convolutional block Attention module. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 3–19, 2018. DOI: https://doi.org/10.1007/978-3-030-01234-2_1.
J. H. Kim, D. H. Kim, S. Yi, T. Lee. Semi-orthogonal embedding for efficient unsupervised anomaly segmentation, [Online], Available: https://arxiv.org/abs/2105.14737, 2021.
N. Cohen, Y. Hoshen. Sub-image anomaly detection with deep pyramid correspondences, [Online], Available: https://arxiv.org/abs/2005.02357, 2020.
N. Li, K. T. Jiang, Z. H. Ma, X. Wei, X. P. Hong, Y. H. Gong. Anomaly detection via self-organizing map. In Proceedings of the IEEE International Conference on Image Processing, Anchorage, USA, pp. 974–978, 2021. DOI: https://doi.org/10.1109/ICIP42928.2021.9506433.
Q. Wan, L. Gao, X. Y. Li, L. Wen. Industrial image anomaly localization based on gaussian clustering of pretrained feature. IEEE Transactions on Industrial Electronics, vol.69, no.6, pp.6182–6192, 2022. DOI: https://doi.org/10.1109/TIE.2021.3094452.
C. C. Tsai, T. H. Wu, S. H. Lai. Multi-scale patch-based representation learning for image anomaly detection and segmentation. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, pp. 3065–3073, 2022. DOI: https://doi.org/10.1109/WACV51458.2022.00312.
Y. Zou, J. Jeong, L. Pemula, D. Q. Zhang, O. Dabeer. SPot-the-difference self-supervised pre-training for anomaly detection and segmentation. In Proceedings of the 17th European Conference on Computer Vision, Springer, Tel Aviv, Israel, pp. 392–408, 2022. DOI: https://doi.org/10.1007/978-3-031-20056-4_23.
K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox, P. Gehler. Towards total recall in industrial anomaly detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, pp. 14298–14308, 2022. DOI: https://doi.org/10.1109/CVPR52688.2022.01392.
S. Lee, S. Lee, B. C. Song. CFA: Coupled-hypersphere-based feature adaptation for target-oriented anomaly localization. IEEE Access, vol.10, pp. 78446–78454, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3193699.
D. Kim, C. Park, S. Cho, S. Lee. FAPM: Fast adaptive patch memory for real-time industrial anomaly detection, [Online], Available: https://arxiv.org/abs/2211.07381, 2022.
J. Bae, J. H. Lee, S. Kim. Image anomaly detection and localization with position and neighborhood information, [Online], Available: https://arxiv.org/abs/2211.12634, 2022.
E. Eskin, A. Arnold, M. Prerau, L. Portnoy, S. Stolfo. Applications of Data Mining in Computer Security, D. Barbara, S. Jajodia, Eds., New York, USA: Springer, pp. 77–101, 2002. DOI: https://doi.org/10.1007/978-l-4615-0953-0_4.
T. Defard, A. Setkov, A. Loesch, R. Audigier. PaDiM: A patch distribution modeling framework for anomaly detection and localization. In Proceedings of International Conference on Pattern Recognition - ICPR International Workshops and Challenges, Springer, Milano, Italy, pp. 475–489, 2021. DOI: https://doi.org/10.1007/978-3-030-68799-1_35.
J. Jang, E. Hwang, S. H. Park. N-pad: Neighboring pixel-based industrial anomaly detection, [Online], Available: https://arxiv.org/abs/2210.08768, 2022.
P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, C. Steger. Improving unsupervised defect segmentation by applying structural similarity to autoencoders. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Funchal, Portugal, pp. 372–380, 2018. DOI: https://doi.org/10.5220/0007364503720380.
H. Chung, J. Park, J. Keum, H. Ki, S. Kang. Unsupervised anomaly detection using style distillation. IEEE Access, vol.8, pp. 221494–221502, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3043473.
Y. F. Liu, C. Q. Zhuang, F. Lu. Unsupervised two-stage anomaly detection, [Online], Available: https://arxiv.org/abs/2103.11671, 2021.
J. Yang, Y. Shi, Z. Q. Qi. DFR: Deep feature reconstruction for unsupervised anomaly segmentation, [Online], Available: https://arxiv.org/abs/2012.07122, 2020.
Y. Yan, D. M. Wang, G. L. Zhou, Q. J. Chen. Unsupervised anomaly segmentation via multilevel image reconstruction and adaptive attention-level transition. IEEE Transactions on Instrumentation and Measurement, vol.70, Article number 5015712, 2021. DOI: https://doi.org/10.1109/TIM.2021.3107586.
K. Zhou, Y. T. Xiao, J. L. Yang, J. Cheng, W. Liu, W. X. Luo, Z. W. Gu, J. Liu, S. H. Gao. Encoding structure-texture relation with p-net for anomaly detection in retinal images. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 360–377, 2020. DOI: https://doi.org/10.1007/978-3-030-58565-5_22.
A. S. Collin, C. De Vleeschouwer. Improved anomaly detection by training an autoencoder with skip connections on images corrupted with stain-shaped noise. In Proceedings of the 25th International Conference on Pattern Recognition, Milan, Italy, pp. 7915–7922, 2021. DOI: https://doi.org/10.1109/ICPR48806.2021.9412842.
X. Tao, D. P. Zhang, W. Z. Ma, Z. X. Hou, Z. F. Lu, C. Adak. Unsupervised anomaly detection for surface defects with dual-siamese network. IEEE Transactions on Industrial Informatics, vol.18, no. 11, pp. 7707–7717, 2022. DOI: https://doi.org/10.1109/TII.2022.3142326.
J. L. Hou, Y. Y. Zhang, Q. Y. Zhong, D. Xie, S. L. Pu, H. Zhou. Divide-and-assemble: Learning block-wise memory for unsupervised anomaly detection. In Proceedings of IEEE/CVF International Conference on Computer Vision, Montreal, Canada, pp. 8771–8780, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00867.
T. K. Liu, B. Li, Z. Zhao, X. Du, B. K. Jiang, L. Q. Geng. Reconstruction from edge image combined with color and gradient difference for industrial surface anomaly detection, [Online], Available: https://arxiv.org/abs/2210.14485, 2022.
D. Kim, D. Jeong, H. Kim, K. Chong, S. Kim, H. Cho. Spatial contrastive learning for anomaly detection and localization. IEEE Access, vol.10, pp. 17366–17376, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3149130.
Z. Y. Li, N. Li, K. T. Jiang, Z. H. Ma, X. Wei, X. P. Hong, Y. H. Gong. Superpixel masking and inpainting for self-supervised anomaly detection. In Proceedings of the 31st British Machine Vision Conference 2020, BMVC, 2020.
V. Zavrtanik, M. Kristan, D. Skočaj. Reconstruction by inpainting for visual anomaly detection. Pattern Recognition, vol.112, Article number 107706, 2021. DOI: https://doi.org/10.1016/j.patcog.2020.107706.
H. Nakanishi, M. Suzuki, Y. Matsuo. Iterative image inpainting with structural similarity mask for anomaly detection. In Proceedings of the 9th International Conference on Learning Representations, 2021.
A. Bauer. Self-supervised training with autoencoders for visual anomaly detection, [Online], Available: https://arxiv.org/abs/2206.11723, 2022.
C. Q. Huang, Q. W. Xu, Y. F. Wang, Y. Wang, Y. Zhang. Self-supervised masking for unsupervised anomaly detection and localization. IEEE Transactions on Multimedia, to be published.
V. Zavrtanik, M. Kristan, D. Skočaj. DRAEM–a discriminatively trained reconstruction embedding for surface anomaly detection. In Proceedings of IEEE/CVF International Conference on Computer Vision, Montreal, Canada, pp. 8310–8319, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00822.
O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Munich, Germany, pp. 234–241, 2015. DOI: https://doi.org/10.1007/978-3-319-24574-4_28.
P. Xing, Y. P. Sun, Z. C. Li. Self-supervised guided segmentation framework for unsupervised anomaly detection, [Online], Available: https://arxiv.org/abs/2209.12440,2022.
V. Zavrtanik, M. Kristan, D. Skočaj. DSR–A dual sub-space re-projection network for surface anomaly detection. In Proceedings of the 17th European Conference on Computer Vision, Springer, Tel Aviv, Israel, pp. 539–554, 2022. DOI: https://doi.org/10.1007/978-3-031-19821-2_31.
H. M. Schlüter, J. Tan, B. Hou, B. Kainz. Natural synthetic anomalies for self-supervised anomaly detection and localization. In Proceedings of the 17th European Conference on Computer Vision, Springer, Tel Aviv, Israel, pp. 474–489, 2022. DOI: https://doi.org/10.1007/978-3-031-19821-2_27.
N. C. Ristea, N. Madan, R. T. Ionescu, K. Nasrollahi, F. S. Khan, T. B. Moeslund, M. Shah. Self-supervised predictive convolutional attentive block for anomaly detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, pp. 13566–13576, 2022. DOI: https://doi.org/10.1109/CVPR52688.2022.01321.
N. Madan, N. C. Ristea, R. T. Ionescu, K. Nasrollahi, F. S. Khan, T. B. Moeslund, M. Shah. Self-supervised masked convolutional transformer block for anomaly detection, [Online], Available: https://arxiv.org/abs/2209.12148, 2022.
D. Dehaene, O. Frigo, S. Combrexelle, P. Eline. Iterative energy-based projection on a normal data manifold for anomaly localization. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.
W. Q. Liu, R. Z. Li, M. Zheng, S. Karanam, Z. Y. Wu, B. Bhanu, R. J. Radke, O. Camps. Towards visually explaining variational autoencoders. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, pp. 8639–8648, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00867.
T. Matsubara, K. Sato, K. Hama, R. Tachibana, K. Uehara. Deep generative model using unregularized score for anomaly detection with heterogeneous complexity. IEEE Transactions on Cybernetics, vol. 52, no. 6, pp. 5161–5173, 2022. DOI: https://doi.org/10.1109/TCYB.2020.3027724.
D. Dehaene, P. Eline. Anomaly localization by modeling perceptual features, [Online], Available: https://arxiv.org/abs/2008.05369, 2020.
L. Wang, D. K. Zhang, J. H. Guo, Y. X. Han. Image anomaly detection using normal data only by latent space resampling. Applied Sciences, vol. 10, no. 23, Article number 8660, 2020. DOI: https://doi.org/10.3390/app10238660.
X. D. Yan, H. D. Zhang, X. X. Xu, X. Hu, P. A. Heng. Learning semantic context from normal samples for unsupervised anomaly detection. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, pp. 3110–3118, 2021. DOI: https://doi.org/10.1609/aaai.v35i4.16420.
J. Song, K. Kong, Y. I. Park, S. G. Kim, S. J. Kang. AnoSeg: Anomaly segmentation network using self-supervised learning, [Online], Available: https://arxiv.org/abs/2110.03396, 2021.
Y. F. Liang, J. N. Zhang, S. W. Zhao, R. Z. Wu, Y. Liu, S. W. Pan. Omni-frequency channel-selection representations for unsupervised anomaly detection, [Online], Available: https://arxiv.org/abs/2203.00259, 2022.
P. Mishra, R. Verk, D. Fornasier, C. Piciarelli, G. L. Foresti. VT-ADL: A vision transformer network for image anomaly detection and localization. In Proceedings of the IEEE 30th International Symposium on Industrial Electronics, Kyoto, Japan, 2021. DOI: https://doi.org/10.1109/ISIE45552.2021.9576231.
Z. Y. You, K. Yang, W. H. Luo, L. Cui, Y. Zheng, X. Y. Le. ADTR: Anomaly detection transformer with feature reconstruction. In Proceedings of the 29th International Conference on Neural Information Processing, Springer, pp. 298–310, 2023. DOI: https://doi.org/10.1007/978-3-031-30111-7_26.
Y. Lee, P. Kang. AnoViT: Unsupervised anomaly detection and localization with vision transformer-based encoder-decoder. IEEE Access, vol.10, pp. 46717–46724, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3171559.
E. Mathian, H. Liu, L. Fernandez-Cuesta, D. Samaras, M. Foil, L. Chen. HaloAE: An HaloNet based local transformer auto-encoder for anomaly detection and localization, [Online], Available: https://arxiv.org/abs/2208.03486, 2022.
J. Pirnay, K. Chai. Inpainting transformer for anomaly detection. In Proceedings of the 21st International Conference on Image Analysis and Processing, Springer, Lecce, Italy, pp. 394–406, 2022. DOI: https://doi.org/10.1007/978-3-031-06430-2_33.
J. L. Jiang, J. L. Zhu, M. Bilal, Y. Cui, N. Kumar, R. H. Dou, F. Su, X. L. Xu. Masked Swin Transformer Unet for industrial anomaly detection. IEEE Transactions on Industrial Informatics, vol.19, no. 2, pp. 2200–2209, 2023. DOI: https://doi.org/10.1109/TII.2022.3199228.
A. De Nardin, P. Mishra, G. L. Foresti, C. Piciarelli. Masked transformer for image anomaly localization. International Journal of Neural Systems, vol. 32, no. 7, Article number 2250030, 2022. DOI: https://doi.org/10.1142/S0129065722500307.
J. Wyatt, A. Leach, S. M. Schmon, C. G. Willcocks. AnoDDPM: Anomaly detection with denoising diffusion probabilistic models using simplex noise. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, pp. 649–655, 2022. DOI: https://doi.org/10.1109/CVPRW56347.2022.00080.
Y. P. Teng, H. Y. Li, F. Z. Cai, M. Shao, S. Y. Xia. Unsupervised visual defect detection with score-based generative model, [Online], Available: https://arxiv.org/abs/2211.16092, 2022.
J. Hu, L. Shen, G. Sun. Squeeze-and-excitation networks. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 7132–7141, 2018. DOI: https://doi.org/10.1109/CVPR.2018.00745.
A. Vaswani, P. Ramachandran, A. Srinivas, N. Parmar, B. Hechtman, J. Shlens. Scaling local self-attention for parameter efficient visual backbones. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, pp. 12889–12899, 2021. DOI: https://doi.org/10.1109/CVPR46437.2021.01270.
K. Perlin. An image synthesizer. ACM SIGGRAPH Computer Graphics, vol.19, no. 3, pp. 287–296, 1985. DOI: https://doi.org/10.1145/325165.325247.
J. Ho, A. Jain. P. Abbeel, Denoising diffusion probabilistic models. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, pp.574, 2020.
W. H. Chu, K. M. Kitani. Neural batch sampling with reinforcement learning for semi-supervised anomaly detection. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 751–766, 2020. DOI: https://doi.org/10.1007/978-3-030-58574-7_45.
J. Božič, D. Tabernik, D. Skočaj. Mixed supervision for surface-defect detection: From weakly to fully supervised learning. Computers in Industry, vol. 129, Article number 103459, 2021. DOI: https://doi.org/10.1016/j.compind.2021.103459.
G. S. Pang, C. B. Ding, C. H. Shen, A. van den Hengel. Explainable deep few-shot anomaly detection with deviation networks, [Online], Available: https://arxiv.org/abs/2108.00462, 2021.
Q. Wan, L. Gao, X. Y. Li. Logit inducing with abnormality capturing for semi-supervised image anomaly detection. IEEE Transactions on Instrumentation and Measurement, vol.71, Article number 3523412, 2022. DOI: https://doi.org/10.1109/TIM.2022.3205674.
C. B. Ding, G. S. Pang, C. H. Shen. Catching both gray and black swans: Open-set supervised anomaly detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, pp. 7378–7388, 2022. DOI: https://doi.org/10.1109/CVPR52688.2022.00724.
V. A. Sindagi, S. Srivastava. Domain adaptation for automatic OLED panel defect detection using adaptive support vector data description. International Journal of Computer Vision, vol.122, no. 2, pp. 193–211, 2017. DOI: https://doi.org/10.1007/s11263-016-0953-y.
K. P. Qiu, L. Tian, P. Wang. An effective framework of automated visual surface defect detection for metal parts. IEEE Sensors Journal, vol.21, no. 18, pp. 20412–20420, 2021. DOI: https://doi.org/10.1109/JSEN.2021.3095410.
G. Bhattacharya, B. Mandai, N. B. Puhan. Interleaved deep artifacts-aware attention mechanism for concrete structural defect classification. IEEE Transactions on Image Processing, vol.30, pp.6957–6969, 2021. DOI: https://doi.org/10.1109/TIP.2021.3100556.
Z. Y. Zeng, B. Liu, J. L. Fu, H. Y. Chao. Reference-based defect detection network. IEEE Transactions on Image Processing, vol.30, pp.6637–6647, 2021. DOI: https://doi.org/10.1109/TIP.2021.3096067.
G. R. Song, K. C. Song, Y. H. Yan. Saliency detection for strip steel surface defects using multiple constraints and improved texture features. Optics and Lasers in Engineering, vol. 128, Article number 106000, 2020. DOI: https://doi.org/10.1016/j.optlaseng.2019.106000.
X. M. Long, B. Fang, Y. F. Zhang, G. Y. Luo, F. C. Sun. Fabric defect detection using tactile information. In Proceedings of IEEE International Conference on Robotics and Automation, Xi’an, China, pp. 11169–11174, 2021. DOI: https://doi.org/10.1109/ICRA48506.2021.9561092.
B. Z. Hu, B. Gao, W. L. Woo, L. F. Ruan, J. K. Jin, Y. Yang, Y. J. Yu. A lightweight spatial and temporal multi-feature fusion network for defect detection. IEEE Transactions on Image Processing, vol.30, pp.472–486, 2021. DOI: https://doi.org/10.1109/TIP.2020.3036770.
M. Ferguson, R. Ak, Y. T. T. Lee, K. H. Law. Detection and segmentation of manufacturing defects with convolutional neural networks and transfer learning, [Online], Available: https://arxiv.org/abs/1808.02518, 2018.
X. Tao, D. P. Zhang, W. Z. Ma, X. L. Liu, D. Xu. Automatic metallic surface defect detection and recognition with convolutional neural networks. Applied Sciences, vol.8, no.9, Article number 1575, 2018. DOI: https://doi.org/10.3390/app8091575.
J. Y. Li, Z. F. Su, J. H. Geng, Y. X. Yin. Real-time detection of steel strip surface defects based on improved YOLO detection network. IFAC-PapersOnLine, vol.51, no. 21, pp. 76–81, 2018. DOI: https://doi.org/10.1016/j.ifacol.2018.09.412.
D. Tabernik, S. Šela, J. Skvarč, D. Skočaj. Segmentation-based deep-learning approach for surface-defect detection. Journal of Intelligent Manufacturing, vol.31, no. 3, pp. 759–776, 2020. DOI: https://doi.org/10.1007/s10845-019-01476-x.
D. W. Zhang, G. Y. Guo, W. Y. Zeng, L. Li, J. W. Han. Generalized weakly supervised object localization. IEEE Transactions on Neural Networks and Learning Systems, to be published.
D. W. Zhang, W. Y. Zeng, J. R. Yao, J. W. Han. Weakly supervised object detection using proposal- and semanticlevel relationships. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.44, no.6, pp.3349–3363, 2022. DOI: https://doi.org/10.1109/TPAMI.2020.3046647.
P. L. Huang, J. W. Han, N. Liu, J. Ren, D. W. Zhang. Scribble-supervised video object segmentation. IEEE/CAA Journal of Automatica Sinica, vol.9, no. 2, pp. 339–353, 2022. DOI: https://doi.org/10.1109/JAS.2021.1004210.
Y. Xi, K. Zhou, L. W. Meng, B. Chen, H. M. Chen, J. Y. Zhang. Transmission Line Insulator Defect Detection Based on Swin Transformer and Context. Machine Intelligence Research, vol.20, no. 5, pp. 729–740, 2023. DOI: https://doi.org/10.1007/s11633-022-1355-y.
J. C. Wu, D. J. Chen, C. S. Fuh, T. L. Liu. Learning unsupervised metaformer for anomaly detection. In Proceedings of IEEE/CVF International Conference on Computer Vision, Montreal, Canada, pp. 4349–4358, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00433.
A. M. Kamoona, A. K. Gostar, A. Bab-Hadiashar, R. Hoseinnezhad. Anomaly detection of defect using energy of point pattern features within random finite set framework, [Online], Available: https://arxiv.org/abs/2108.12159, 2021.
C. Q. Huang, H. Y. Guan, A. F. Jiang, Y. Zhang, M. Spratling, Y. F. Wang. Registration based few-shot anomaly detection. In Proceedings of the 17th European Conference on Computer Vision, Springer, Tel Aviv, Israel, pp. 303–319, 2022. DOI: https://doi.org/10.1007/978-3-031-20053-3_18.
E. Schwartz, A. Arbelle, L. Karlinsky, S. Harary, F. Scheidegger, S. Doveh, R. Giryes. MAEDAY: MAE for few and zero shot AnomalY-detection, [Online], Available: https://arxiv.org/abs/2211.14307, 2022.
K. M. He, X. L. Chen, S. N. Xie, Y. H. Li, P. Dollár, R. Girshick. Masked autoencoders are scalable vision learners. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, pp. 15979–15988, 2022. DOI: https://doi.org/10.1109/CVPR52688.2022.01553.
J. Jeong, Y. Zou, T. Kim, D. Q. Zhang, A. Ravichandran, O. Dabeer. WinCLIP: Zero-/few-shot anomaly classification and segmentation, [Online], Available: https://arxiv.org/abs/2303.14814, 2023.
A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, I. Sutskever. Learning transferable visual models from natural language supervision. In Proceedings of the 38th International Conference on Machine Learning, pp.8748–8763, 2021.
D. S. Tan, Y. C. Chen, T. P. C. Chen, W. C. Chen. Trust-MAE: A noise-resilient defect classification framework using memory-augmented auto-encoders with trust regions. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, pp. 276–285, 2021. DOI: https://doi.org/10.1109/WACV48630.2021.00032.
J. Yoon, K. Sohn, C. L. Li, S. Ö. Arik, C. Y. Lee, T. Pfister. Self-supervise, refine, repeat: Improving unsupervised anomaly detection. Transactions on Machine Learning Research, to be published.
C. Qiu, A. D. Li, M. Kloft, M. Rudolph, S. Mandt. Latent outlier exposure for anomaly detection with contaminated data. In Proceedings of the 39th International Conference on Machine Learning, Baltimore, USA, pp. 18153–18167, 2022.
Y. H. Chen, Y. Tian, G. S. Pang, G. Carneiro. Deep one-class classification via interpolated gaussian descriptor. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 383–392, 2022. DOI: https://doi.org/10.1609/aaai.v36il.19915.
P. Bergmann, D. Sattlegger. Anomaly detection in 3D point clouds using deep geometric descriptors. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, pp. 2612–2622, 2023. DOI: https://doi.org/10.1109/WACV56688.2023.00264.
E. Horwitz, Y. Hoshen. Back to the feature: Classical 3D features are (almost) all you need for 3D anomaly detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Vancouver, Canada, pp. 2967–2976, 2023.
R. B. Rusu, N. Blodow, M. Beetz. Fast point feature histograms (FPFH) for 3D registration. In Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 3212–3217, 2009. DOI: https://doi.org/10.1109/ROBOT.2009.5152473.
T. Reiss, N. Cohen, E. Horwitz, R. Abutbul, Y. Hoshen. Anomaly detection requires better representations. In Proceedings of Computer Vision–2022 Workshops, Springer, Tel Aviv, Israel, pp. 56–68, 2023. DOI: https://doi.org/10.1007/978-3-031-25069-9_4.
J. H. Liu, C. Y. Wang, H. Su, B. Du, D. C. Tao. Multistage GAN for fabric defect detection. IEEE Transactions on Image Processing, vol. 29, pp. 3388–3400, 2020. DOI: https://doi.org/10.1109/TIP.2019.2959741.
O. Rippel, M. Müller, D. Merhof, GAN-based defect synthesis for anomaly detection in fabrics. In Proceedings of the 25th IEEE International Conference on Emerging Technologies and Factory Automation, Vienna, Austria, pp. 534–540, 2020. DOI: https://doi.org/10.1109/ETFA46521.2020.9212099.
J. Y. Zhu, T. Park, P. Isola, A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, pp. 2242–2251, 2017. DOI: https://doi.org/10.1109/ICCV.2017.244.
S. L. Niu, B. Li, X. G. Wang, H. Lin. Defect image sample generation with GAN for improving defect recognition. IEEE Transactions on Automation Science and Engineering, vol. 17, no. 3, pp. 1611–1622, 2020. DOI: https://doi.org/10.1109/tase.2020.2967415.
T. R. Wei, D. H. Cao, X. R. Jiang, C. Y. Zheng, L. Z. Liu. Defective samples simulation through neural style transfer for automatic surface defect segment. In Proceedings of International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, Beijing, China, pp. 1143904, 2020. DOI: https://doi.org/10.1117/12.2540464.
T. R. Wei, D. H. Cao, C. Y. Zheng, Q. Yang. A simulation-based few samples learning method for surface defect segmentation. Neurocomputing, vol.412, pp.461–476, 2020. DOI: https://doi.org/10.1016/j.neucom.2020.06.090.
S. Jain, G. Seth, A. Paruthi, U. Soni, G. Kumar. Synthetic data augmentation for surface defect detection and classification using deep learning. Journal of Intelligent Manufacturing, vol.33, no.4, pp. 1007–1020, 2022. DOI: https://doi.org/10.1007/s10845-020-01710-x.
R. Y. Wang, S. Hoppe, E. Monari, M. F. Huber. Defect transfer GAN: Diverse defect synthesis for data augmentation. In Proceedings of the 33rd British Machine Vision Conference 2022, London, UK, pp.445, 2021.
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, pp. 6629–6640, 2017.
M. Bińkowski, D. J. Sutherland, M. Arbel, A. Gretton. Demystifying MMD GANs. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
G. J. Zhang, K. W. Cui, T. Y. Hung, S. J. Lu. Defect-GAN: High-fidelity defect synthesis for automated defect inspection. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, pp. 2523–2533, 2021. DOI: https://doi.org/10.1109/WACV48630.2021.00257.
J. Silvestre-Blanes, T. Albero-Albero, I. Miralles, R. Pérez-Llorens, J. More A public fabric database for defect detection methods and results. Autex Research Journal, vol.19, no.4, pp.363–374, 2019. DOI: https://doi.org/10.2478/aut-2019-0035.
M. Wieler, T. Hahn. Weakly supervised learning for industrial optical inspection. DAGM Symposium, 2007.
S. L. Tang, F. He, X. L. Huang, J. Yang. Online PCB defect detector on a new PCB defect dataset, [Online], Available: https://arxiv.org/abs/1902.06197, 2019.
L. Bonfiglioli, M. Toschi, D. Silvestri, N. Fioraio, D. De Gregorio. The eyecandies dataset for unsupervised multimodal anomaly detection and localization. In Proceedings of the 16th Asian Conference on Computer Vision, Springer, Macao, China, pp. 459–475, 2022. DOI: https://doi.org/10.1007/978-3-031-26348-4_27.
C. S. C. Tsang, H. Y. T. Ngan, G. K. H. Pang. Fabric inspection based on the elo rating method. Pattern Recognition, vol.51, pp.378–394, 2016. DOI: https://doi.org/10.1016/j.patcog.2015.09.022.
D. Mery, V. Riffo, U. Zscherpel, G. Mondragón, I. Lillo, I. Zuccar, H. Lobel, M. Carrasco. Gdxray: The database of X-ray images for nondestructive testing. Journal of Nondestructive Evaluation, vol.34, no.4, Article number 42, 2015. DOI: https://doi.org/10.1007/sl0921-015-0315-7.
T. P. Bao, J. D. Chen, W. Li, X. Wang, J. J. Fei, L. W. Wu, R. Zhao, Y. Zheng. MIAD: A maintenance inspection dataset for unsupervised anomaly detection, [Online], Available: https://arxiv.org/abs/2211.13968, 2022.
S. Jezek, M. Jonak, R. Burget, P. Dvorak, M. Skotak. Deep learning-based defect detection of metal parts: Evaluating current methods in complex conditions. In Proceedings of the 13th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, Brno, Czech Republic, pp. 66–71, 2021. DOI: https://doi.org/10.1109/ICUMT54235.2021.9631567.
Y. B. Huang, C. Y. Qiu, K. Yuan. Surface defect saliency of magnetic tile. The Visual Computer, vol.36, no. 1, pp. 85–96, 2020. DOI: https://doi.org/10.1007/s00371-018-1588-5.
P. Bergmann, X. Jin, D. Sattlegger, C. Steger. The MVTec 3D-AD dataset for unsupervised 3D anomaly detection and localization. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 202–213, 2021. DOI: https://doi.org/10.5220/0010865000003124.
D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone. Defect detection in SEM images of nanofibrous materials. IEEE Transactions on Industrial Informatics, vol. 13, no. 2, pp. 551–561, 2017. DOI: https://doi.org/10.1109/tii.2016.2641472.
K. C. Song, Y. H. Yan. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Applied Surface Science, vol. 285, pp.858–864, 2013. DOI: https://doi.org/10.1016/j.apsusc.2013.09.002.
J. R. Gan, Q. Y. Li, J. Z. Wang, H. M. Yu. A hierarchical extractor-based visual rail surface inspection system. IEEE Sensors Journal, vol.17, no. 23, pp. 7935–7944, 2017. DOI: https://doi.org/10.1109/JSEN.2017.2761858.
Kaggle. Severstal: Steel defect detection, [Online], Available: https://www.kaggle.com/c/severstal-steel-defect-detection, 2019.
D. M. Yang, Y. R. Cui, Z. Y. Yu, H. Q. Yuan. Deep learning based steel pipe weld defect detection. Applied Artificial Intelligence, vol.35, no. 15, pp. 1237–1249, 2021. DOI: https://doi.org/10.1080/08839514.2021.1975391.
P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, C. Steger. The mvtec anomaly detection dataset: A comprehensive real-world dataset for unsupervised anomaly detection. International Journal of Computer Vision, vol.129, no.4, pp. 1038–1059, 2021. DOI: https://doi.org/10.1007/s11263-020-01400-4.
M. A. Rahman, Y. Wang. Optimizing intersection-over-union in deep neural networks for image segmentation. In Proceedings of the 12th International Symposium on Advances in Visual Computing, Springer, Las Vegas, USA, pp. 234–244, 2016. DOI: https://doi.org/10.1007/978-3-319-50835-1_22.
S. Sheynin, S. Benaim, L. Wolf. A hierarchical transformation-discriminating generative model for few shot anomaly detection. In Proceedings of IEEE/CVF International Conference on Computer Vision, Montreal, Canada, pp. 8475–8484, 2021. DOI: https://doi.org/10.1109/ICCV48922.2021.00838.
X. Jiang, J. L. Liu, J. B. Wang, Q. Nie, K. Wu, Y. Liu, C. J. Wang, F. Zheng. SoftPatch: Unsupervised anomaly detection with noisy data. In Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022.
G. Y. Xie, J. B. Wang, J. Q. Liu, J. Y. Lyu, Y. Liu, C. J. Wang, F. Zheng, Y. C. Jin. IM-IAD: Industrial image anomaly detection benchmark in manufacturing, [Online], Available: https://arxiv.org/abs/2301.13359, 2023.
D. W. Zhang, G. H. Huang, Q. Zhang, J. G. Han, J. W. Han, Y. Z. Wang, Y. Z. Yu. Exploring task structure for brain tumor segmentation from multi-modality MR images. IEEE Transactions on Image Processing, vol. 29, pp. 9032–9043, 2020. DOI: https://doi.org/10.1109/TIP.2020.3023609.
D. W. Zhang, G. H. Huang, Q. Zhang, J. G. Han, J. W. Han, Y. Z. Yu. Cross-modality deep feature learning for brain tumor segmentation. Pattern Recognition, vol. 110, Article number 107562, 2021. DOI: https://doi.org/10.1016/j.patcog.2020.107562.
C. W. Fang, Q. Wang, L. C. Cheng, Z. F. Gao, C. W. Pan, Z. Cao, Z. H. Zheng, D. W. Zhang. Reliable mutual distillation for medical image segmentation under imperfect annotations. IEEE Transactions on Medical Imaging, vol.42, no.6, pp. 1720–1734, 2023. DOI: https://doi.org/10.1109/TMI.2023.3237183.
W. C. Wang, E. Ahn, D. Feng, J. Kim. A Review of Predictive and Contrastive Self-supervised Learning for Medical Images. Machine Intelligence Research, vol.20, no.4, pp.483–513, 2023. DOI: https://doi.org/10.1007/s11633-022-1406-4.
T. Shyamalee, D. Meedeniya. Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification. Machine Intelligence Research, vol.19, no. 6, pp. 563–580, 2022. DOI: https://doi.org/10.1007/s11633-022-1354-z.
Acknowledgements
This work was partly supported by the National Key R&D Program of China (No. 2022YFF1202903) and National Natural Science Foundation of China (Nos. 62122035 and 62206122). Y. Jin is funded by an Alexander von Humboldt Professorship for Artificial Intelligence endowed by the Federal Ministry of Education and Research of Germany. Open Access funding provided by Bielefeld University.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declared that they have no conflicts of interest to this work.
Additional information
Colored figures are available in the online version at https://link.springer.com/journal/11633
Jiaqi Liu received the B.Sc. degree in software engineering from Dalian University of Technology, China in 2019. He is a master student in electronic science and technology from Southern University of Science and Technology, China, under the supervision of Professor Feng Zheng.
His research interest is image anomaly detection.
Guoyang Xie received the B.Sc. degree in physical electronic and the M. Sc. degree in robotics from University of Electronic Science and Technology of China, Hong Kong University of Science and Technology, China in 2009 and 2013, respectively. He is a Ph. D. degree candidate in machine learning from University of Surrey, UK. Prior to that, he was the Principle Perception Algorithm Engineer in Baidu and GAC, respectively.
His research interests include anomaly detection, medical imaging, neural architecture search and federated learning.
Jinbao Wang received the Ph.D. degree in computer application technology from University of Chinese Academy of Sciences (UCAS), China in 2019. He is currently a research assistant professor with Southern University of Science and Technology (SUSTech), China.
His research interests include machine learning, computer vision, image anomaly detection, and graph representation learning.
Shangnian Li received the B. Sc. in measurement and control technology and instruments and the M. Sc. degree in computer science and technology from Huaiyin Institute of Technology, Beijing Union University, China in 2012 and 2016, respectively. He is currently the research assistant of Sustech VIP Lab, China. Prior to that, he was the vehicle networking engineer in Beijing Xiangzhi Technology Co., Ltd., China.
His research interests include internet of things and anomaly detection.
Chengjie Wang received the B.Sc. degree in computer science from Shanghai Jiao Tong University, China in 2011, and double M. Sc. degrees in computer science from Shanghai Jiao Tong University, and Waseda University, Japan, in 2014. He is currently the Research Director of YouTu Lab, Tencent, China. And he is pursuing the Ph.D. degree in computer science at Department of Computer Science and Engineering, Shanghai Jiao Tong University, China. He has authored or coauthored more than 90 refereed papers on major Computer Vision and Artificial Intelligence Conferences, such as CVPR, ICCV, ECCV, AAAI, IJCAI, and NeurIPS, and holds more than 100 patents in his research areas.
His research interests include computer vision and machine learning.
Feng Zheng received the Ph.D. degree in electronic science and engineering from the University of Sheffield, UK in 2017. He is currently an assistant professor with Department of Computer Science and Engineering, Southern University of Science and Technology, China.
His research interests include machine learning, computer vision, and human-computer interaction.
Yaochu Jin received the B.Sc, M.Sc. and Ph.D. degrees in automatic control from Zhejiang University, China in 1988, 1991 and 1996, respectively, and the Dr.Ing. degree in computer engineering from Ruhr University Bochum, Germany in 2001. He is presently an Alexander von Humboldt Professor for Artificial Intelligence endowed by the German Federal Ministry of Education and Research, Chair of Nature Inspired Computing and Engineering, Faculty of Technology, Bielefeld University, Germany. He is also a Distinguished Chair, Professor in Computational Intelligence, Department of Computer Science, University of Surrey, Guildford, UK. He was a “Finland Distinguished Professor” of University of Jyvskyl awarded by the Academy of Science and Finnish Funding Agency for Innovation, Finland, and “Changjiang Distinguished Visiting Professor” of Northeastern University, awarded by the Ministry of Education, China. Prof. Jin is the President-Elect of the IEEE Computational Intelligence Society and the Editor-in-Chief of Complex & Intelligent Systems. He was named by Clarivate as a “Highly Cited Researcher” from 2019 to 2022 consecutively. He is a Member of Academia Europaea and Fellow of IEEE.
His research interests include human-centered learning and optimization, synergies between evolution and learning, and evolutionary developmental artificial intelligence.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Liu, J., Xie, G., Wang, J. et al. Deep Industrial Image Anomaly Detection: A Survey. Mach. Intell. Res. 21, 104–135 (2024). https://doi.org/10.1007/s11633-023-1459-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11633-023-1459-z