Abstract
Consistent and uniform lubrication of the solidifying shell, especially in the meniscus, is crucial for the smooth continuous casting operation and production of strands free of surface defects. Thus, the current study established a coupled model to study the inflow behavior of liquid slag to the mold-strand channel, taking the solidification of steel and slag and the periodic oscillation of mold into account. The difficulties and solutions for the simulation were described in detail. The predicted profiles of the slag rim and initial shell were in good agreement with the reports. The main results indicated that liquid slag could be squeezed out and back into the slag pool in a negative strip period while a large amount of liquid slag could infiltrate into the mold-strand channel. Thus, the amount of slag consumed in the negative strip period was relatively small compared with that in the positive strip period. The predicted variation of slag consumption during mold oscillation was periodic, and the average value was 0.274 kg/m2, which agreed well with the slag consumption in industrial practice. The current model can predict and optimize the oscillation parameters aiming at stable lubrication conditions.
Similar content being viewed by others
References
K.C. Mills: Ironmaking Steelmaking, 2017, vol. 44, pp. 326-32.
K.C. Mills: ISIJ Int., 2016, vol. 56, pp. 1-13.
K. Okazawa, T. Kajitani, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 226-33.
V. Ludlow, B. Harris, S. Riaz, and A. Normanton: Ironmaking Steelmaking, 2005, vol. 32, pp. 120-26.
Y. Ren, L.F. Zhang, and S.S. Li: ISIJ Int., 2014, vol. 54, pp. 2772-79.
N. Pradhan, M. Ghosh, D. S. Basu, and S. Mazumdar: ISIJ Int., 1999, vol. 39, pp. 804-08.
K. Tsutsumi, J. Ohtake, and M. Hino: ISIJ Int., 2000, vol. 40, pp. 601-08.
A. Yamauchi, T. Emi, and S. Seetharaman: ISIJ Int., 2002, vol. 42, pp. 1084-93.
C. Ojeda, J. Sengupta, B.G. Thomas, J. Barco, and J.L. Arana: Proc. AISTech Conf., 2006. pp. 1017-28.
K. Okazawa, T. Kajitani, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 234-40.
T. Kajitani, K. Okazawa, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 250-56.
P.E. Ramirez-Lopez, P.D. Lee, and K.C. Mills: ISIJ Int., 2010, vol. 50, pp. 425-34.
P.E. Ramirez-Lopez, P.D. Lee, K.C. Mills, and B. Santillana: ISIJ Int., 2010, vol. 50, pp. 1797-804.
P.E. Ramirez-Lopez, U. Sjostrom, P.D. Lee, K.C. Mills, B. Jonsson, and J. Janis: Proc. AISTech Conf., 2012 pp. 1259-67.
X.D. Wang, L.W. Kong, M. Yao, and X.B. Zhang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 357-66.
J. Yang, X.N. Meng, N. Wang, M.Y. Zhu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1230-47.
M.S. Jenkins: Monash University, 1999.
K. Tsutsumi, H. Murakami, S. Nishioka, M. Tada, M. Nakada, and M. Komatsu: Tetsu-to-Hagane, 1998, vol. 84, pp. 617-24.
K.C. Mills, P.E. Ramirez-Lopez, P.D. Lee, B. Santillana, B.G. Thomas, and R. Morales: Ironmaking Steelmaking, 2014, vol. 41, pp. 242-49.
B.G. Thomas, L.F. Zhang: ISIJ Int., 2001, vol. 41, pp. 1181-93.
L.F. Zhang: JOM, 2012, vol. 64, pp. 1059-62.
ANSYS FLUENT 14.0. Canonsburg, PA: ANSYS, Inc, 2011.
Q. Yuan, S.P. Vanka, B.G. Thomas, and S. Sivaramakrishnan: Metall. Mater. Trans. B, 2004, vol. 35, pp. 967-82.
P.E. Ramirez-Lopez, K.C. Mills, P.D. Lee, and B. Santillana: Metall. Mater. Trans. B, 2012, vol. 43, pp. 109-22.
C.W. Hirt and B.D. Nichols: J. Comput. Phy., 1981, vol. 39, pp. 201-25.
J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phy., 1992, vol. 100, pp. 335-54.
P. Liovic, J. Liow, and M. Rudman: ISIJ Int., 2001, vol. 41, pp. 225-33.
L.F. Zhang, Y.F. Wang: JOM, 2012, vol. 64, pp. 1063-74.
Q.Q. Wang, L.F. Zhang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1933-49.
Q.Q. Wang, L.F. Zhang, and S. Sridhar: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2623-42.
S.W. Lei, J.M. Zhang, X.K. Zhao, and K. He: ISIJ Int., 2014, vol. 54, pp. 94-102.
R.D. Morales, A.G. Lopez, and I.M. Olivares: ISIJ Int., 1990, vol. 30, pp. 48-57.
Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 707-25.
T. Wu, S.P. He, L.L. Zhu, and Q. Wang: Mater. Trans., 2016, vol. 57, pp. 58-63.
K.C. Mills, A.B. Fox, R.P. Thackray, and Z. Li: VII Int. Conf. Molten Slags Fluxes Salts, 2004, pp. 713-21.
Y. Ren, L.F. Zhang, H.T. Ling, Y. Wang, D.T. Pan, Q. Ren, and X.C. Wang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1433-38.
X.K. Li, C.S. Qiao, X.S. Xu, H. Zhong, C.L. Xu, and S.C. Gong: Iron Steel, 1992, vol. 27, pp. 20-24.
M. Hanao, M. Kawamoto, and A. Yamanaka: ISIJ Int., 2012, vol. 52, pp. 1310-19.
J.J. Bikerman: Physical surfaces, Academic Press, Cambridge 1970.
H. Fredriksson and J. Elfsberg: Scand. J. Metall., 2002, vol. 31, pp. 292-97.
H. Shin, S. Kim, B.G. Thomas, G. Lee, J. Park, and J. Sengupta: ISIJ Int., 2006, vol. 46, pp. 1635-44.
K.C. Mills and Carl-Åke Däcker: The Casting Powders Book, Springer New York, 2017.
Y. Meng: Ph.D. Thesis, University of Illinois, 2004, p. 179.
K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmaking Steelmaking, 2005, vol. 32, pp. 26-34.
K. Kawakami, T. Kitagawa, H. Mizukami, H. Uchibori, S. Miyahara, M. Suzuki, and Y. Shiratani: Tetsu-to-Hagane, 1981, vol. 67, pp. 1190-99.
E. Anzai and T. Shigezumi: Nippon Kokan Technical Report, 1987, vol. 34, pp. 31-40.
Acknowledgments
The authors are grateful for support from the Key Project of Natural Science Foundation of China (Grant No. U1660204) and the Fundamental Research Funds for the Central Universities in China (Grant No. 106112017CDJXY130001).
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted December, 4 2017.
Rights and permissions
About this article
Cite this article
Zhang, S., Wang, Q., He, S. et al. Study of the Mechanism of Liquid Slag Infiltration for Lubrication in Slab Continuous Casting. Metall Mater Trans B 49, 2038–2049 (2018). https://doi.org/10.1007/s11663-018-1267-y
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11663-018-1267-y