Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Study of the Mechanism of Liquid Slag Infiltration for Lubrication in Slab Continuous Casting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Consistent and uniform lubrication of the solidifying shell, especially in the meniscus, is crucial for the smooth continuous casting operation and production of strands free of surface defects. Thus, the current study established a coupled model to study the inflow behavior of liquid slag to the mold-strand channel, taking the solidification of steel and slag and the periodic oscillation of mold into account. The difficulties and solutions for the simulation were described in detail. The predicted profiles of the slag rim and initial shell were in good agreement with the reports. The main results indicated that liquid slag could be squeezed out and back into the slag pool in a negative strip period while a large amount of liquid slag could infiltrate into the mold-strand channel. Thus, the amount of slag consumed in the negative strip period was relatively small compared with that in the positive strip period. The predicted variation of slag consumption during mold oscillation was periodic, and the average value was 0.274 kg/m2, which agreed well with the slag consumption in industrial practice. The current model can predict and optimize the oscillation parameters aiming at stable lubrication conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K.C. Mills: Ironmaking Steelmaking, 2017, vol. 44, pp. 326-32.

    Article  Google Scholar 

  2. K.C. Mills: ISIJ Int., 2016, vol. 56, pp. 1-13.

    Article  Google Scholar 

  3. K. Okazawa, T. Kajitani, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 226-33.

    Article  Google Scholar 

  4. V. Ludlow, B. Harris, S. Riaz, and A. Normanton: Ironmaking Steelmaking, 2005, vol. 32, pp. 120-26.

    Article  Google Scholar 

  5. Y. Ren, L.F. Zhang, and S.S. Li: ISIJ Int., 2014, vol. 54, pp. 2772-79.

    Article  Google Scholar 

  6. N. Pradhan, M. Ghosh, D. S. Basu, and S. Mazumdar: ISIJ Int., 1999, vol. 39, pp. 804-08.

    Article  Google Scholar 

  7. K. Tsutsumi, J. Ohtake, and M. Hino: ISIJ Int., 2000, vol. 40, pp. 601-08.

    Article  Google Scholar 

  8. A. Yamauchi, T. Emi, and S. Seetharaman: ISIJ Int., 2002, vol. 42, pp. 1084-93.

    Article  Google Scholar 

  9. C. Ojeda, J. Sengupta, B.G. Thomas, J. Barco, and J.L. Arana: Proc. AISTech Conf., 2006. pp. 1017-28.

  10. K. Okazawa, T. Kajitani, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 234-40.

    Article  Google Scholar 

  11. T. Kajitani, K. Okazawa, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 250-56.

    Article  Google Scholar 

  12. P.E. Ramirez-Lopez, P.D. Lee, and K.C. Mills: ISIJ Int., 2010, vol. 50, pp. 425-34.

    Article  Google Scholar 

  13. P.E. Ramirez-Lopez, P.D. Lee, K.C. Mills, and B. Santillana: ISIJ Int., 2010, vol. 50, pp. 1797-804.

    Article  Google Scholar 

  14. P.E. Ramirez-Lopez, U. Sjostrom, P.D. Lee, K.C. Mills, B. Jonsson, and J. Janis: Proc. AISTech Conf., 2012 pp. 1259-67.

  15. X.D. Wang, L.W. Kong, M. Yao, and X.B. Zhang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 357-66.

    Article  Google Scholar 

  16. J. Yang, X.N. Meng, N. Wang, M.Y. Zhu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1230-47.

    Article  Google Scholar 

  17. M.S. Jenkins: Monash University, 1999.

  18. K. Tsutsumi, H. Murakami, S. Nishioka, M. Tada, M. Nakada, and M. Komatsu: Tetsu-to-Hagane, 1998, vol. 84, pp. 617-24.

    Article  Google Scholar 

  19. K.C. Mills, P.E. Ramirez-Lopez, P.D. Lee, B. Santillana, B.G. Thomas, and R. Morales: Ironmaking Steelmaking, 2014, vol. 41, pp. 242-49.

    Article  Google Scholar 

  20. B.G. Thomas, L.F. Zhang: ISIJ Int., 2001, vol. 41, pp. 1181-93.

    Article  Google Scholar 

  21. L.F. Zhang: JOM, 2012, vol. 64, pp. 1059-62.

    Article  Google Scholar 

  22. ANSYS FLUENT 14.0. Canonsburg, PA: ANSYS, Inc, 2011.

  23. Q. Yuan, S.P. Vanka, B.G. Thomas, and S. Sivaramakrishnan: Metall. Mater. Trans. B, 2004, vol. 35, pp. 967-82.

    Article  Google Scholar 

  24. P.E. Ramirez-Lopez, K.C. Mills, P.D. Lee, and B. Santillana: Metall. Mater. Trans. B, 2012, vol. 43, pp. 109-22.

    Article  Google Scholar 

  25. C.W. Hirt and B.D. Nichols: J. Comput. Phy., 1981, vol. 39, pp. 201-25.

    Article  Google Scholar 

  26. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phy., 1992, vol. 100, pp. 335-54.

    Article  Google Scholar 

  27. P. Liovic, J. Liow, and M. Rudman: ISIJ Int., 2001, vol. 41, pp. 225-33.

    Article  Google Scholar 

  28. L.F. Zhang, Y.F. Wang: JOM, 2012, vol. 64, pp. 1063-74.

    Article  Google Scholar 

  29. Q.Q. Wang, L.F. Zhang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1933-49.

    Article  Google Scholar 

  30. Q.Q. Wang, L.F. Zhang, and S. Sridhar: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2623-42.

    Article  Google Scholar 

  31. S.W. Lei, J.M. Zhang, X.K. Zhao, and K. He: ISIJ Int., 2014, vol. 54, pp. 94-102.

    Article  Google Scholar 

  32. R.D. Morales, A.G. Lopez, and I.M. Olivares: ISIJ Int., 1990, vol. 30, pp. 48-57.

    Article  Google Scholar 

  33. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 707-25.

    Article  Google Scholar 

  34. T. Wu, S.P. He, L.L. Zhu, and Q. Wang: Mater. Trans., 2016, vol. 57, pp. 58-63.

    Article  Google Scholar 

  35. K.C. Mills, A.B. Fox, R.P. Thackray, and Z. Li: VII Int. Conf. Molten Slags Fluxes Salts, 2004, pp. 713-21.

  36. Y. Ren, L.F. Zhang, H.T. Ling, Y. Wang, D.T. Pan, Q. Ren, and X.C. Wang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1433-38.

    Article  Google Scholar 

  37. X.K. Li, C.S. Qiao, X.S. Xu, H. Zhong, C.L. Xu, and S.C. Gong: Iron Steel, 1992, vol. 27, pp. 20-24.

    Google Scholar 

  38. M. Hanao, M. Kawamoto, and A. Yamanaka: ISIJ Int., 2012, vol. 52, pp. 1310-19.

    Article  Google Scholar 

  39. J.J. Bikerman: Physical surfaces, Academic Press, Cambridge 1970.

    Google Scholar 

  40. H. Fredriksson and J. Elfsberg: Scand. J. Metall., 2002, vol. 31, pp. 292-97.

    Article  Google Scholar 

  41. H. Shin, S. Kim, B.G. Thomas, G. Lee, J. Park, and J. Sengupta: ISIJ Int., 2006, vol. 46, pp. 1635-44.

    Article  Google Scholar 

  42. K.C. Mills and Carl-Åke Däcker: The Casting Powders Book, Springer New York, 2017.

    Book  Google Scholar 

  43. Y. Meng: Ph.D. Thesis, University of Illinois, 2004, p. 179.

  44. K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmaking Steelmaking, 2005, vol. 32, pp. 26-34.

    Article  Google Scholar 

  45. K. Kawakami, T. Kitagawa, H. Mizukami, H. Uchibori, S. Miyahara, M. Suzuki, and Y. Shiratani: Tetsu-to-Hagane, 1981, vol. 67, pp. 1190-99.

    Article  Google Scholar 

  46. E. Anzai and T. Shigezumi: Nippon Kokan Technical Report, 1987, vol. 34, pp. 31-40.

Download references

Acknowledgments

The authors are grateful for support from the Key Project of Natural Science Foundation of China (Grant No. U1660204) and the Fundamental Research Funds for the Central Universities in China (Grant No. 106112017CDJXY130001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangqiang Wang.

Additional information

Manuscript submitted December, 4 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, Q., He, S. et al. Study of the Mechanism of Liquid Slag Infiltration for Lubrication in Slab Continuous Casting. Metall Mater Trans B 49, 2038–2049 (2018). https://doi.org/10.1007/s11663-018-1267-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1267-y

Keywords